254 research outputs found

    Coronary artery bypass grafting hemodynamics and anastomosis design: a biomedical engineering review

    Get PDF
    10.1186/1475-925X-12-129BioMedical Engineering Online121Article number 129, 28 page

    Light detection and ranging (LiDAR) and multispectral studies of disturbed Lake Superior coastal environments

    Get PDF
    Due to its high spatial resolution and excellent water penetration, coastal light detection and ranging (LiDAR) coupled with multispectral imaging (MSS) has great promise for resolving shoreline features in the Great Lakes. Previous investigations in Lake Superior documented a metal-rich “halo” around the Keweenaw Peninsula, related to past copper mining practices. Grand Traverse Bay on the Keweenaw Peninsula provides an excellent Great Lakes example of global mine discharges into coastal environments. For more than a century, waste rock migrating from shoreline tailings piles has moved along extensive stretches of coast, damming stream outlets, intercepting wetlands and recreational beaches, suppressing benthic invertebrate communities, and threatening critical fish breeding grounds. In the bay, the magnitude of the discarded wastes literally “reset the shoreline” and provided an intriguing field experiment in coastal erosion and spreading environmental effects. Employing a combination of historic aerial photography and LiDAR, we estimate the time course and mass of tailings eroded into the bay and the amount of copper that contributed to the metal-rich halo. We also quantify underwater tailings spread across benthic substrates by using MSS imagery on spectral reflectance differences between tailings and natural sediment types, plus a depth-correction algorithm (Lyzenga Method). We show that the coastal detail from LiDAR and MSS opens up numerous applications for ecological, ecosystem, and geological investigations

    Complex exon-intron marking by histone modifications is not determined solely by nucleosome distribution

    Get PDF
    It has recently been shown that nucleosome distribution, histone modifications and RNA polymerase II (Pol II) occupancy show preferential association with exons (“exon-intron marking”), linking chromatin structure and function to co-transcriptional splicing in a variety of eukaryotes. Previous ChIP-sequencing studies suggested that these marking patterns reflect the nucleosomal landscape. By analyzing ChIP-chip datasets across the human genome in three cell types, we have found that this marking system is far more complex than previously observed. We show here that a range of histone modifications and Pol II are preferentially associated with exons. However, there is noticeable cell-type specificity in the degree of exon marking by histone modifications and, surprisingly, this is also reflected in some histone modifications patterns showing biases towards introns. Exon-intron marking is laid down in the absence of transcription on silent genes, with some marking biases changing or becoming reversed for genes expressed at different levels. Furthermore, the relationship of this marking system with splicing is not simple, with only some histone modifications reflecting exon usage/inclusion, while others mirror patterns of exon exclusion. By examining nucleosomal distributions in all three cell types, we demonstrate that these histone modification patterns cannot solely be accounted for by differences in nucleosome levels between exons and introns. In addition, because of inherent differences between ChIP-chip array and ChIP-sequencing approaches, these platforms report different nucleosome distribution patterns across the human genome. Our findings confound existing views and point to active cellular mechanisms which dynamically regulate histone modification levels and account for exon-intron marking. We believe that these histone modification patterns provide links between chromatin accessibility, Pol II movement and co-transcriptional splicing

    Mutations in tropomyosin 4 underlie a rare form of human macrothrombocytopenia

    Get PDF
    Platelets are anuclear cells that are essential for blood clotting. They are produced by large polyploid precursor cells called megakaryocytes. Previous genome-wide association studies in nearly 70,000 individuals indicated that single nucleotide variants (SNVs) in the gene encoding the actin cytoskeletal regulator tropomyosin 4 (TPM4) exert an effect on the count and volume of platelets. Platelet number and volume are independent risk factors for heart attack and stroke. Here, we have identified 2 unrelated families in the BRIDGE Bleeding and Platelet Disorders (BPD) collection who carry a TPM4 variant that causes truncation of the TPM4 protein and segregates with macrothrombocytopenia, a disorder characterized by low platelet count. N-Ethyl-N-nitrosourea-induced (ENU-induced) missense mutations in Tpm4 or targeted inactivation of the Tpm4 locus led to gene dosage-dependent macrothrombocytopenia in mice. All other blood cell counts in Tpm4-deficient mice were normal. Insufficient TPM4 expression in human and mouse megakaryocytes resulted in a defect in the terminal stages of platelet production and had a mild effect on platelet function. Together, our findings demonstrate a nonredundant role for TPM4 in platelet biogenesis in humans and mice and reveal that truncating variants in TPM4 cause a previously undescribed dominant Mendelian platelet disorder.Irina Pleines ... Benjamin T. Kil

    Stroke in Africa: Profile, progress, prospects and priorities

    Get PDF
    Funding text 1 R.O.A. is supported by the UK Royal Society/African Academy of Sciences FLAIR Grants FLR/R1/191813 and FCG/R1/ 201034, and a GCRF Networking Grant from the UK Academy of Medical Sciences. R.O.A., M.O.O., B.O. and F.S.S. are also supported by grants U54HG007479 and U01HG010273 from the US National Institutes of Health (NIH) as part of the H3Africa Consortium. M.O.O., B.O., R.O.A. and F.S.S. are further supported by NIH grant R01NS107900. R.N.K.’s research on elderly survivors of stroke has been supported by the Medical Research Council, RCUK Newcastle Centre for Brain Ageing and Vitality (MRC G0500247), Alzheimer’s Research UK, the Dunhill Medical Trust, UK, and the Newcastle National Institute for Health Research Biomedical Research Centre in Ageing and Age-Related Diseases, Newcastle upon Tyne Hospitals National Health Service Foundation Trust. Funding text 2 funds provided by the Wellcome Trust and the NIH. The NIH-funded SIREN study is exploring the genetic architecture of stroke among Indigenous Africans. More than 4,000 case–control pairs have already been recruited to the study and several publications on stroke phenom-ics and preliminary candidate gene analyses have been generated. The SIREN study has also undertaken the first-ever GWAS to unravel the genetic architecture of stroke in Indigenous Africans and the results are eagerly awaited. Stroke neurobanking resources consisting of blood fractions, extracted DNA, neuroimages and databases of clinical information are also being built in Africa and could facilitate data science-driven trans-omics research (including epigenomics, tran-scriptomics, proteomics and metabolomics) as well as the development of precision medicine products such as Afrocentric risk calculators, polygenic risk scores, biomarkers and drug targets23–25,227,307,308. The SIREN neurobiobank comprises a group of constantly monitored ultra-low-temperature (–86 °C) freezers located in Ibadan, Nigeria, constantly powered –20 °C chest freezers located in Ibadan and other recruitment sites, barcode scanners and printers, a laboratory information management system, a secure multi-terabyte server,Stroke is a leading cause of disability, dementia, and death worldwide. Approximately 70% of deaths from stroke and 87% of stroke-related disabilities occur in low-income and middle-income countries. At the turn of the century, the most common diseases in Africa were communicable diseases, whereas non-communicable diseases, including stroke, were considered rare, particularly in sub-Saharan Africa. However, evidence indicates that today, Africa could have up to 2–3-fold greater rates of stroke incidence and higher stroke prevalence than western Europe and the USA. In Africa, data published within the past decade show that stroke has an annual incidence rate of up to 316 per 100,000, a prevalence of up to 1,460 per 100,000, and a 3-year fatality rate greater than 80%. Moreover, many Africans have a stroke within the fourth to sixth decades of life, with serious implications for the individual, their family, and society. This age profile is particularly important as strokes in younger people tend to result in a greater loss of self-worth and socioeconomic productivity than in older individuals. Emerging insights from research into stroke epidemiology, genetics, prevention, care, and outcomes offer great prospects for tackling the growing burden of stroke on the continent. In this article, we review the unique profile of stroke in Africa and summarize current knowledge on stroke epidemiology, genetics, prevention, acute care, rehabilitation, outcomes, cost of care, and awareness. We also discuss knowledge gaps, emerging priorities, and future directions of stroke medicine for the more than 1 billion people who live in Africa. © 2021, Springer Nature Limited.Newcastle National Institute for Health Research Biomedical Research Centre in Ageing and Age-Related Diseases Newcastle upon Tyne Hospitals National Health Service Foundation Trust RCUK Newcastle Centre for Brain Ageing and Vitality Royal Society/African Academy of Sciences: FCG/R1/ 201034,FLR/R1/191813 National Institutes of Health (NIH): R01NS107900 Wellcome Trust (WT) Medical Research Council (MRC): G0500247 Dunhill Medical Trust (DMT) Academy of Medical Sciences: U01HG010273,U54HG007479 Alzheimer’s Research UK (ARUK
    corecore