82 research outputs found
Molecular absorption lines toward star-forming regions : a comparative study of HCO+, HNC, HCN, and CN
Aims. The comparative study of several molecular species at the origin of the
gas phase chemistry in the diffuse interstellar medium (ISM) is a key input in
unraveling the coupled chemical and dynamical evolution of the ISM. Methods.
The lowest rotational lines of HCO+, HCN, HNC, and CN were observed at the
IRAM-30m telescope in absorption against the \lambda 3 mm and \lambda 1.3 mm
continuum emission of massive star-forming regions in the Galactic plane. The
absorption lines probe the gas over kiloparsecs along these lines of sight. The
excitation temperatures of HCO+ are inferred from the comparison of the
absorptions in the two lowest transitions. The spectra of all molecular species
on the same line of sight are decomposed into Gaussian velocity components.
Most appear in all the spectra of a given line of sight. For each component, we
derived the central opacity, the velocity dispersion, and computed the
molecular column density. We compared our results to the predictions of
UV-dominated chemical models of photodissociation regions (PDR models) and to
those of non-equilibrium models in which the chemistry is driven by the
dissipation of turbulent energy (TDR models). Results. The molecular column
densities of all the velocity components span up to two orders of magnitude.
Those of CN, HCN, and HNC are linearly correlated with each other with mean
ratios N(HCN)/N(HNC) = 4.8 1.3 and N(CN)/N(HNC) = 34 12, and more
loosely correlated with those of HCO+, N(HNC)/N(HCO+) = 0.5 0.3,
N(HCN)/N(HCO+) = 1.9 0.9, and N(CN)/N(HCO+) = 18 9. These ratios
are similar to those inferred from observations of high Galactic latitude lines
of sight, suggesting that the gas sampled by absorption lines in the Galactic
plane has the same chemical properties as that in the Solar neighbourhood. The
FWHM of the Gaussian velocity components span the range 0.3 to 3 km s-1 and
those of the HCO+ lines are found to be 30% broader than those of CN-bearing
molecules. The PDR models fail to reproduce simultaneously the observed
abundances of the CN-bearing species and HCO+, even for high-density material
(100 cm-3 < nH < 104 cm-3). The TDR models, in turn, are able to reproduce the
observed abundances and abundance ratios of all the analysed molecules for the
moderate gas densities (30 cm-3 < nH < 200 cm-3) and the turbulent energy
observed in the diffuse interstellar medium. Conclusions. Intermittent
turbulent dissipation appears to be a promising driver of the gas phase
chemistry of the diffuse and translucent gas throughout the Galaxy. The details
of the dissipation mechanisms still need to be investigated
A study of the dissociative recombination of CaO + with electrons: Implications for Ca chemistry in the upper atmosphere
The dissociative recombination of CaO+ ions with electrons has been studied in a flowing afterglow reactor. CaO+ was generated by the pulsed laser ablation of a Ca target, followed by entrainment in an Ar+ ion/electron plasma. A kinetic model describing the gas-phase chemistry and diffusion to the reactor walls was fitted to the experimental data, yielding a rate coefficient of (3.0 ± 1.0) × 10¯⁷ cm³ molecule¯¹ s¯¹ at 295 K. This result has two atmospheric implications. First, the surprising observation that the Ca+/Fe+ ratio is ~8 times larger than Ca/Fe between 90 and 100 km in the atmosphere can now be explained quantitatively by the known ion-molecule chemistry of these two metals. Second, the rate of neutralization of Ca+ ions in a descending sporadic E layer is fast enough to explain the often explosive growth of sporadic neutral Ca layers
Unique, non‐Earthlike, meteoritic ion behavior in upper atmosphere of Mars
Interplanetary dust particles have long been expected to produce permanent ionospheric metal ion layers at Mars, as on Earth, but the two environments are so different that uncertainty existed as to whether terrestrial-established understanding would apply to Mars. The Mars Atmosphere and Volatile EvolutioN (MAVEN) mission made the first in situ detection of the continuous presence of Na+, Mg+, and Fe+ at Mars and indeed revealed non-Earthlike features/processes. There is no separation of the light Mg+ and the heavy Fe+ with increasing altitude as expected for gravity control. The metal ions are well-mixed with the neutral atmosphere at altitudes where no mixing process is expected. Isolated metal ion layers mimicking Earth's sporadic E layers occur despite the lack of a strong magnetic field as required at Earth. Further, the metal ion distributions are coherent enough to always show atmospheric gravity wave signatures. All features and processes are unique to Mars
A combined rocket-borne and ground-based study of the sodium layer and charged dust in the upper mesosphere
The Hotel Payload 2 rocket was launched on January 31st 2008 at 20.14 LT from the Andøya Rocket Range in northern Norway (69.31° N, 16.01° E). Measurements in the 75–105 km region of atomic O, negatively-charged dust, positive ions and electrons with a suite of instruments on the payload were complemented by lidar measurements of atomic Na and temperature from the nearby ALOMAR observatory. The payload passed within 2.58 km of the lidar at an altitude of 90 km. A series of coupled models is used to explore the observations, leading to two significant conclusions. First, the atomic Na layer and the vertical profiles of negatively-charged dust (assumed to be meteoric smoke particles), electrons and positive ions, can be modelled using a self-consistent meteoric input flux. Second, electronic structure calculations and Rice–Ramsperger–Kassel–Markus theory are used to show that even small Fe–Mg–silicates are able to attach electrons rapidly and form stable negatively-charged particles, compared with electron attachment to O2 and O3. This explains the substantial electron depletion between 80 and 90 km, where the presence of atomic O at concentrations in excess of 1010 cm−3 prevents the formation of stable negative ions
New extended deuterium fractionation model: assessment at dense ISM conditions and sensitivity analysis
Observations of deuterated species are useful in probing the temperature,
ionization level, evolutionary stage, chemistry, and thermal history of
astrophysical environments. The analysis of data from ALMA and other new
telescopes requires an elaborate model of deuterium fractionation. This paper
presents a publicly available chemical network with multi-deuterated species
and an extended, up-to-date set of gas-phase and surface reactions. To test
this network, we simulate deuterium fractionation in diverse interstellar
sources. Two cases of initial abundances are considered: i) atomic except for
H2 and HD, and ii) molecular from a prestellar core. We reproduce the observed
D/H ratios of many deuterated molecules, and sort the species according to
their sensitivity to temperature gradients and initial abundances. We find that
many multiply-deuterated species produced at 10 K retain enhanced D/H ratios at
temperatures \la 100 K. We study how recent updates to reaction rates affect
calculated D/H ratios, and perform a detailed sensitivity analysis of the
uncertainties of the gas-phase reaction rates in the network. We find that
uncertainties are generally lower in dark cloud environments than in warm IRDCs
and that uncertainties increase with the size of the molecule and number of
D-atoms. A set of the most problematic reactions is presented. We list
potentially observable deuterated species predicted to be abundant in low- and
high-mass star-formation regions.Comment: 30 pages, 8 figures, accepted for publication in ApJ
Chemical kinetics in an atmospheric pressure helium plasma containing humidity
Atmospheric pressure plasmas are sources of biologically active oxygen and nitrogen species, which makes them potentially suitable for the use as biomedical devices. Here, experiments and simulations are combined to investigate the formation of the key reactive oxygen species, atomic oxygen (O) and hydroxyl radicals (OH), in a radio-frequency driven atmospheric pressure plasma jet operated in humidified helium. Vacuum ultra-violet high-resolution Fourier-transform absorption spectroscopy and ultra-violet broad-band absorption spectroscopy are used to measure absolute densities of O and OH. These densities increase with increasing H 2 O content in the feed gas, and approach saturation values at higher admixtures on the order of 3 × 10 14 cm −3 for OH and 3 × 10 13 cm −3 for O. Experimental results are used to benchmark densities obtained from zero-dimensional plasma chemical kinetics simulations, which reveal the dominant formation pathways. At low humidity content, O is formed from OH + by proton transfer to H 2 O, which also initiates the formation of large cluster ions. At higher humidity content, O is created by reactions between OH radicals, and lost by recombination with OH. OH is produced mainly from H 2 O + by proton transfer to H 2 O and by electron impact dissociation of H 2 O. It is lost by reactions with other OH molecules to form either H 2 O + O or H 2 O 2 . Formation pathways change as a function of humidity content and position in the plasma channel. The understanding of the chemical kinetics of O and OH gained in this work will help in the development of plasma tailoring strategies to optimise their densities in applications
26th Annual Computational Neuroscience Meeting (CNS*2017): Part 3 - Meeting Abstracts - Antwerp, Belgium. 15–20 July 2017
This work was produced as part of the activities of FAPESP Research,\ud
Disseminations and Innovation Center for Neuromathematics (grant\ud
2013/07699-0, S. Paulo Research Foundation). NLK is supported by a\ud
FAPESP postdoctoral fellowship (grant 2016/03855-5). ACR is partially\ud
supported by a CNPq fellowship (grant 306251/2014-0)
Dissociative recombination
International audienceExperimental and theoretical developments in the field of dissociative recombination research over the last 15 years are reviewed. Rate coefficients and branching ratios for final channels of the reaction are tabulated
Synchrotron radiation studies of additives in combustion I: Water
International audienceSmall Angle X-ray Scattering (SAXS) measurements have been performed on a partially pre-mixed ethylene-air flame with and without the introduction of a water aerosol for the same flame height. Our measurements are sensitive to particles with radii in the range of 6-78 nm. It is found that water addition leads to soot suppression below the detection limit at low heights along the flame centerline (<11 mm) and to an increased sooting tendency higher up in the flame. There, larger primary particles (Rg˜20-45 nm) shaped as agglomerates with fractal dimension about 2 are observed together with a large number of smaller (Rg ˜ 10 nm) smooth particles, which we identify with sub-primary units observed in previous work on pure diffusion flames. In the case of the un-doped partially pre-mixed flame, however, only relatively (Rg ˜ 20-35 nm) large spherical particles (Porod's exponent about 4) are observed. An intriguing result is that water addition induces the enhanced formation of sub-primaries, with these having more than 2 orders of magnitude higher number concentration with respect to the spherical particles in the water free flame
Small Angle Neutron Scattering (SANS) Study of Soot Particles in an Ethylene-Air Diffusion Flame
International audienceNeutron scattering techniques have been applied to the study soot particles in an ethylene diffusion flame. Primary particle sizes have been determined as a function of height-above-the-burner. The practicality of the method has been demonstrated
- …