1,083 research outputs found

    High D2_2O/HDO ratio in the inner regions of the low-mass protostar NGC1333 IRAS2A

    Get PDF
    Water plays a crucial role both in the interstellar medium and on Earth. To constrain its formation mechanisms and its evolution through the star formation process, the determination of the water deuterium fractionation ratios is particularly suitable. Previous studies derived HDO/H2_2O ratios in the warm inner regions of low-mass protostars. We here report a detection of the D2_2O 11,0_{1,0}-10,1_{0,1} transition toward the low-mass protostar NGC1333 IRAS2A with the Plateau de Bure interferometer: this represents the first interferometric detection of D2_2O - and only the second solar-type protostar for which this isotopologue is detected. Using the observations of the HDO 54,2_{4,2}-63,3_{3,3} transition simultaneously detected and three other HDO lines previously observed, we show that the HDO line fluxes are well reproduced with a single excitation temperature of 218±\pm21 K and a source size of ∼\sim0.5 arcsec. The D2_2O/HDO ratio is ∼\sim(1.2±\pm0.5) ×\times 10−2^{-2}, while the use of previous H218_2^{18}O observations give an HDO/H2_2O ratio of ∼\sim(1.7±\pm0.8) ×\times 10−3^{-3}, i.e. a factor of 7 lower than the D2_2O/HDO ratio. These results contradict the predictions of current grain surface chemical models and indicate that either the surface deuteration processes are poorly understood or that both sublimation of grain mantles and water formation at high temperatures (≳\gtrsim230 K) take place in the inner regions of this source. In the second scenario, the thermal desorption of the grain mantles would explain the high D2_2O/HDO ratio, while water formation at high temperature would explain significant extra production of H2_2O leading to a decrease of the HDO/H2_2O ratio.Comment: Accepted for publication in ApJ Letters; 12 pages, 2 figure

    A Survey on the Contributions of Software-Defined Networking to Traffic Engineering

    Get PDF
    Since the appearance of OpenFlow back in 2008, software-defined networking (SDN) has gained momentum. Although there are some discrepancies between the standards developing organizations working with SDN about what SDN is and how it is defined, they all outline traffic engineering (TE) as a key application. One of the most common objectives of TE is the congestion minimization, where techniques such as traffic splitting among multiple paths or advanced reservation systems are used. In such a scenario, this manuscript surveys the role of a comprehensive list of SDN protocols in TE solutions, in order to assess how these protocols can benefit TE. The SDN protocols have been categorized using the SDN architecture proposed by the open networking foundation, which differentiates among data-controller plane interfaces, application-controller plane interfaces, and management interfaces, in order to state how the interface type in which they operate influences TE. In addition, the impact of the SDN protocols on TE has been evaluated by comparing them with the path computation element (PCE)-based architecture. The PCE-based architecture has been selected to measure the impact of SDN on TE because it is the most novel TE architecture until the date, and because it already defines a set of metrics to measure the performance of TE solutions. We conclude that using the three types of interfaces simultaneously will result in more powerful and enhanced TE solutions, since they benefit TE in complementary ways.European Commission through the Horizon 2020 Research and Innovation Programme (GN4) under Grant 691567 Spanish Ministry of Economy and Competitiveness under the Secure Deployment of Services Over SDN and NFV-based Networks Project S&NSEC under Grant TEC2013-47960-C4-3-

    Constraining the abundances of complex organics in the inner regions of solar-type protostars

    Get PDF
    The high abundances of Complex Organic Molecules (COMs) with respect to methanol, the most abundant COM, detected towards low-mass protostars, tend to be underpredicted by astrochemical models. This discrepancy might come from the large beam of the single-dish telescopes, encompassing several components of the studied protostar, commonly used to detect COMs. To address this issue, we have carried out multi-line observations of methanol and several COMs towards the two low-mass protostars NGC1333-IRAS2A and -IRAS4A with the Plateau de Bure interferometer at an angular resolution of 2 arcsec, resulting in the first multi-line detection of the O-bearing species glycolaldehyde and ethanol and of the N-bearing species ethyl cyanide towards low-mass protostars other than IRAS 16293. The high number of detected transitions from COMs (more than 40 methanol transitions for instance) allowed us to accurately derive the source size of their emission and the COMs column densities. The COMs abundances with respect to methanol derived towards IRAS2A and IRAS4A are slightly, but not substantitally, lower than those derived from previous single-dish observations. The COMs abundance ratios do not vary significantly with the protostellar luminosity, over five orders of magnitude, implying that low-mass hot corinos are quite chemically rich as high-mass hot cores. Astrochemical models still underpredict the abundances of key COMs, such as methyl formate or di-methyl ether, suggesting that our understanding of their formation remains incomplete.Comment: 60 pages, 10 figures, 17 tables. Accepted for publication in Ap

    Can Formamide Be Formed on Interstellar Ice? An Atomistic Perspective

    Full text link
    Interstellar formamide (NH2CHO) has recently attracted significant attention due to its potential role as a molecular building block in the formation of precursor biomolecules relevant for the origin of life. Its formation, whether on the surfaces of the interstellar grains or in the gas phase, is currently debated. The present article presents new theoretical quantum chemical computations on possible NH2CHO formation routes in water-rich amorphous ices, simulated by a 33-H2O-molecule cluster. We have considered three possible routes. The first one refers to a scenario used in several current astrochemical models, that is, the radical-radical association reaction between NH2 and HCO. Our calculations show that formamide can indeed be formed, but in competition with formation of NH3 and CO through a direct H transfer process. The final outcome of the NH2 + HCO reactivity depends on the relative orientation of the two radicals on the ice surface. We then analyzed two other possibilities, suggested here for the first time: reaction of either HCN or CN with water molecules of the ice mantle. The reaction with HCN has been found to be characterized by large energy barriers and, therefore, cannot occur under the interstellar ice conditions. On the contrary, the reaction with the CN radical can occur, possibly leading through multiple steps to the formation of NH2CHO. For this reaction, water molecules of the ice act as catalytic active sites since they help the H transfers involved in the process, thus reducing the energy barriers (compared to the gas-phase analogous reaction). Additionally, we apply a statistical model to estimate the reaction rate coefficient when considering the cluster of 33-H2O-molecules as an isolated moiety with respect to the surrounding environment, i.e., the rest of the ice

    Problematic de Suivi de la Pêche Insulaire

    Get PDF
    • …
    corecore