109 research outputs found

    Measurement of the cross section for isolated-photon plus jet production in pp collisions at √s=13 TeV using the ATLAS detector

    Get PDF
    The dynamics of isolated-photon production in association with a jet in proton–proton collisions at a centre-of-mass energy of 13 TeV are studied with the ATLAS detector at the LHC using a dataset with an integrated luminosity of 3.2 fb−1. Photons are required to have transverse energies above 125 GeV. Jets are identified using the anti- algorithm with radius parameter and required to have transverse momenta above 100 GeV. Measurements of isolated-photon plus jet cross sections are presented as functions of the leading-photon transverse energy, the leading-jet transverse momentum, the azimuthal angular separation between the photon and the jet, the photon–jet invariant mass and the scattering angle in the photon–jet centre-of-mass system. Tree-level plus parton-shower predictions from Sherpa and Pythia as well as next-to-leading-order QCD predictions from Jetphox and Sherpa are compared to the measurements

    A search for resonances decaying into a Higgs boson and a new particle X in the XH → qqbb final state with the ATLAS detector

    Get PDF
    A search for heavy resonances decaying into a Higgs boson (H) and a new particle (X) is reported, utilizing 36.1 fb−1 of proton–proton collision data at collected during 2015 and 2016 with the ATLAS detector at the CERN Large Hadron Collider. The particle X is assumed to decay to a pair of light quarks, and the fully hadronic final state is analysed. The search considers the regime of high XH resonance masses, where the X and H bosons are both highly Lorentz-boosted and are each reconstructed using a single jet with large radius parameter. A two-dimensional phase space of XH mass versus X mass is scanned for evidence of a signal, over a range of XH resonance mass values between 1 TeV and 4 TeV, and for X particles with masses from 50 GeV to 1000 GeV. All search results are consistent with the expectations for the background due to Standard Model processes, and 95% CL upper limits are set, as a function of XH and X masses, on the production cross-section of the resonance

    Comparison between simulated and observed LHC beam backgrounds in the ATLAS experiment at Ebeam =4 TeV

    Get PDF
    Results of dedicated Monte Carlo simulations of beam-induced background (BIB) in the ATLAS experiment at the Large Hadron Collider (LHC) are presented and compared with data recorded in 2012. During normal physics operation this background arises mainly from scattering of the 4 TeV protons on residual gas in the beam pipe. Methods of reconstructing the BIB signals in the ATLAS detector, developed and implemented in the simulation chain based on the \textscFluka Monte Carlo simulation package, are described. The interaction rates are determined from the residual gas pressure distribution in the LHC ring in order to set an absolute scale on the predicted rates of BIB so that they can be compared quantitatively with data. Through these comparisons the origins of the BIB leading to different observables in the ATLAS detectors are analysed. The level of agreement between simulation results and BIB measurements by ATLAS in 2012 demonstrates that a good understanding of the origin of BIB has been reached

    Search for an invisibly decaying Higgs boson or dark matter candidates produced in association with a Z boson in pp collisions at root s=13 TeV with the ATLAS detector

    Get PDF
    SCOAP

    The ATLAS trigger system for LHC Run 3 and trigger performance in 2022

    Get PDF
    The ATLAS trigger system is a crucial component of the ATLAS experiment at the LHC. It is responsible for selecting events in line with the ATLAS physics programme. This paper presents an overview of the changes to the trigger and data acquisition system during the second long shutdown of the LHC, and shows the performance of the trigger system and its components in the proton-proton collisions during the 2022 commissioning period as well as its expected performance in proton-proton and heavy-ion collisions for the remainder of the third LHC data-taking period (2022–2025)

    Measurement of vector boson production cross sections and their ratios using pp collisions at √s = 13.6 TeV with the ATLAS detector

    Get PDF
    Abstract available from publisher's website

    Combination of searches for heavy spin-1 resonances using 139 fb−1 of proton-proton collision data at √s = 13 TeV with the ATLAS detector

    Get PDF
    A combination of searches for new heavy spin-1 resonances decaying into diferent pairings of W, Z, or Higgs bosons, as well as directly into leptons or quarks, is presented. The data sample used corresponds to 139 fb−1 of proton-proton collisions at √s = 13 TeV collected during 2015–2018 with the ATLAS detector at the CERN Large Hadron Collider. Analyses selecting quark pairs (qq, bb, tt¯, and tb) or third-generation leptons (τν and τ τ ) are included in this kind of combination for the frst time. A simplifed model predicting a spin-1 heavy vector-boson triplet is used. Cross-section limits are set at the 95% confdence level and are compared with predictions for the benchmark model. These limits are also expressed in terms of constraints on couplings of the heavy vector-boson triplet to quarks, leptons, and the Higgs boson. The complementarity of the various analyses increases the sensitivity to new physics, and the resulting constraints are stronger than those from any individual analysis considered. The data exclude a heavy vector-boson triplet with mass below 5.8 TeV in a weakly coupled scenario, below 4.4 TeV in a strongly coupled scenario, and up to 1.5 TeV in the case of production via vector-boson fusion

    Searches for exclusive Higgs boson decays into D⁎γ and Z boson decays into D0γ and Ks0γ in pp collisions at √s = 13 TeV with the ATLAS detector

    Get PDF
    Searches for exclusive decays of the Higgs boson into D⁎γ and of the Z boson into D0γ and Ks0γ can probe flavour-violating Higgs boson and Z boson couplings to light quarks. Searches for these decays are performed with a pp collision data sample corresponding to an integrated luminosity of 136.3 fb−1 collected at s=13TeV between 2016–2018 with the ATLAS detector at the CERN Large Hadron Collider. In the D⁎γ and D0γ channels, the observed (expected) 95% confidence-level upper limits on the respective branching fractions are B(H→D⁎γ)<1.0(1.2)×10−3, B(Z→D0γ)<4.0(3.4)×10−6, while the corresponding results in the Ks0γ channel are B(Z→Ks0γ)<3.1(3.0)×10−6

    Beam-induced backgrounds measured in the ATLAS detector during local gas injection into the LHC beam vacuum

    Get PDF
    Inelastic beam-gas collisions at the Large Hadron Collider (LHC), within a few hundred metres of the ATLAS experiment, are known to give the dominant contribution to beam backgrounds. These are monitored by ATLAS with a dedicated Beam Conditions Monitor (BCM) and with the rate of fake jets in the calorimeters. These two methods are complementary since the BCM probes backgrounds just around the beam pipe while fake jets are observed at radii of up to several metres. In order to quantify the correlation between the residual gas density in the LHC beam vacuum and the experimental backgrounds recorded by ATLAS, several dedicated tests were performed during LHC Run 2. Local pressure bumps, with a gas density several orders of magnitude higher than during normal operation, were introduced at different locations. The changes of beam-related backgrounds, seen in ATLAS, are correlated with the local pressure variation. In addition the rates of beam-gas events are estimated from the pressure measurements and pressure bump profiles obtained from calculations. Using these rates, the efficiency of the ATLAS beam background monitors to detect beam-gas events is derived as a function of distance from the interaction point. These efficiencies and characteristic distributions of fake jets from the beam backgrounds are found to be in good agreement with results of beam-gas simulations performed with theFluka Monte Carlo programme

    Measurement of ZZ production cross-sections in the four-lepton final state in pp collisions at √s = 13.6 TeV with the ATLAS experiment

    Get PDF
    This paper reports cross-section measurements of ZZ production in pp collisions at √s = 13.6TeV at the Large Hadron Collider. The data were collected by the ATLAS detector in 2022, and correspond to an integrated luminosity of 29 fb−1. Events in the ZZ → 4ℓ (ℓ = e, μ) final states are selected and used to measure the inclusive and differential cross-sections in a fiducial region defined close to the analysis selections. The inclusive cross-section is further extrapolated to the total phase space with a requirement of 66 <mZ < 116 GeV for both Z bosons, yielding 16.8 ± 1.1 pb. The results are well described by the Standard Model predictions
    corecore