9 research outputs found

    Multi-messenger observations of a binary neutron star merger

    Get PDF
    On 2017 August 17 a binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors. The Fermi Gamma-ray Burst Monitor independently detected a gamma-ray burst (GRB 170817A) with a time delay of ~1.7 s with respect to the merger time. From the gravitational-wave signal, the source was initially localized to a sky region of 31 deg2 at a luminosity distance of 40+8-8 Mpc and with component masses consistent with neutron stars. The component masses were later measured to be in the range 0.86 to 2.26 Mo. An extensive observing campaign was launched across the electromagnetic spectrum leading to the discovery of a bright optical transient (SSS17a, now with the IAU identification of AT 2017gfo) in NGC 4993 (at ~40 Mpc) less than 11 hours after the merger by the One- Meter, Two Hemisphere (1M2H) team using the 1 m Swope Telescope. The optical transient was independently detected by multiple teams within an hour. Subsequent observations targeted the object and its environment. Early ultraviolet observations revealed a blue transient that faded within 48 hours. Optical and infrared observations showed a redward evolution over ~10 days. Following early non-detections, X-ray and radio emission were discovered at the transient’s position ~9 and ~16 days, respectively, after the merger. Both the X-ray and radio emission likely arise from a physical process that is distinct from the one that generates the UV/optical/near-infrared emission. No ultra-high-energy gamma-rays and no neutrino candidates consistent with the source were found in follow-up searches. These observations support the hypothesis that GW170817 was produced by the merger of two neutron stars in NGC4993 followed by a short gamma-ray burst (GRB 170817A) and a kilonova/macronova powered by the radioactive decay of r-process nuclei synthesized in the ejecta

    Type 1 diabetes: Developing the first risk-estimation model for predicting silent myocardial ischemia. The potential role of insulin resistance

    Get PDF
    OBJECTIVES: The aim of the study was to develop a novel risk estimation model for predicting silent myocardial ischemia (SMI) in patients with type 1 diabetes (T1DM) and no clinical cardiovascular disease, evaluating the potential role of insulin resistance in such a model. Additionally, the accuracy of this model was compared with currently available models for predicting clinical coronary artery disease (CAD) in general and diabetic populations. RESEARCH, DESIGN AND METHODS: Patients with T1DM (35-65years, >10-year duration) and no clinical cardiovascular disease were consecutively evaluated for: 1) clinical and anthropometric data (including classical cardiovascular risk factors), 2) insulin sensitivity (estimate of glucose disposal rate (eGDR)), and 3) SMI diagnosed by stress myocardial perfusion gated SPECTs. RESULTS: Eighty-four T1DM patients were evaluated [50.1±9.3 years, 50% men, 36.9% active smokers, T1DM duration: 19.0(15.9-27.5) years and eGDR 7.8(5.5-9.4)mg·kg-1·min-1]. Of these, ten were diagnosed with SMI (11.9%). Multivariate logistic regression models showed that only eGDR (OR = -0.593, p = 0.005) and active smoking (OR = 7.964, p = 0.018) were independently associated with SMI. The AUC of the ROC curve of this risk estimation model for predicting SMI was 0.833 (95%CI:0.692-0.974), higher than those obtained with the use of currently available models for predicting clinical CAD (Framingham Risk Equation: 0.833 vs. 0.688, p = 0.122; UKPDS Risk Engine (0.833 vs. 0.559; p = 0.001) and EDC equation: 0.833 vs. 0.558, p = 0.027). CONCLUSION: This study provides the first ever reported risk-estimation model for predicting SMI in T1DM. The model only includes insulin resistance and active smoking as main predictors of SMI

    Biochemical Effects of Drugs Acting on the Central Nervous System

    No full text

    Measurement of the properties of the ? b ??0 baryon

    No full text

    The Biology and Behaviour of Intracerebral Adrenal Transplants in Animals and Man

    No full text
    corecore