59 research outputs found

    Effects of Mowing on Methane Uptake in a Semiarid Grassland in Northern China

    Get PDF
    Background: Mowing is a widely adopted management practice for the semiarid steppe in China and affects CH4 exchange. However, the magnitude and the underlying mechanisms for CH 4 uptake in response to mowing remain uncertain. Methodology/Principal Findings: In two consecutive growing seasons, we measured the effect of mowing on CH 4 uptake in a steppe community. Vegetation was mowed to 2 cm (M2), 5 cm (M5), 10 cm (M10), 15 cm (M15) above soil surface, respectively, and control was set as non-mowing (NM). Compared with control, CH4 uptake was substantially enhanced at almost all the mowing treatments except for M15 plots of 2009. CH4 uptake was significantly correlated with soil microbial biomass carbon, microbial biomass nitrogen, and soil moisture. Mowing affects CH 4 uptake primarily through its effect on some biotic factors, such as net primary productivity, soil microbial C\N supply and soil microbial activities, while soil temperature and moisture were less important. Conclusions/Significance: This study found that mowing affects the fluxes of CH4 in the semiarid temperate steppe of north China

    Biology and biotechnology of Trichoderma

    Get PDF
    Fungi of the genus Trichoderma are soilborne, green-spored ascomycetes that can be found all over the world. They have been studied with respect to various characteristics and applications and are known as successful colonizers of their habitats, efficiently fighting their competitors. Once established, they launch their potent degradative machinery for decomposition of the often heterogeneous substrate at hand. Therefore, distribution and phylogeny, defense mechanisms, beneficial as well as deleterious interaction with hosts, enzyme production and secretion, sexual development, and response to environmental conditions such as nutrients and light have been studied in great detail with many species of this genus, thus rendering Trichoderma one of the best studied fungi with the genome of three species currently available. Efficient biocontrol strains of the genus are being developed as promising biological fungicides, and their weaponry for this function also includes secondary metabolites with potential applications as novel antibiotics. The cellulases produced by Trichoderma reesei, the biotechnological workhorse of the genus, are important industrial products, especially with respect to production of second generation biofuels from cellulosic waste. Genetic engineering not only led to significant improvements in industrial processes but also to intriguing insights into the biology of these fungi and is now complemented by the availability of a sexual cycle in T. reesei/Hypocrea jecorina, which significantly facilitates both industrial and basic research. This review aims to give a broad overview on the qualities and versatility of the best studied Trichoderma species and to highlight intriguing findings as well as promising applications

    Measurement of the charge ratio of atmospheric muons with the CMS detector

    Get PDF
    This is the pre-print version of this Article. The official published version can be accessed from the link below - Copyright @ 2010 ElsevierWe present a measurement of the ratio of positive to negative muon fluxes from cosmic ray interactions in the atmosphere, using data collected by the CMS detector both at ground level and in the underground experimental cavern at the CERN LHC. Muons were detected in the momentum range from 5 GeV/c to 1 TeV/c. The surface flux ratio is measured to be 1.2766 \pm 0.0032(stat.) \pm 0.0032 (syst.), independent of the muon momentum, below 100 GeV/c. This is the most precise measurement to date. At higher momenta the data are consistent with an increase of the charge ratio, in agreement with cosmic ray shower models and compatible with previous measurements by deep-underground experiments

    Observation of a new Xi(b) baryon

    Get PDF
    The first observation of a new b baryon via its strong decay into Xi(b)^- pi^+ (plus charge conjugates) is reported. The measurement uses a data sample of pp collisions at sqrt(s) = 7 TeV collected by the CMS experiment at the LHC, corresponding to an integrated luminosity of 5.3 inverse femtobarns. The known Xi(b)^- baryon is reconstructed via the decay chain Xi(b)^- to J/psi Xi^- to mu^+ mu^- Lambda^0 pi^-, with Lambda^0 to p pi^-. A peak is observed in the distribution of the difference between the mass of the Xi(b)^- pi^+ system and the sum of the masses of the Xi(b)^- and pi^+, with a significance exceeding five standard deviations. The mass difference of the peak is 14.84 +/- 0.74 (stat.) +/- 0.28 (syst.) MeV. The new state most likely corresponds to the J^P=3/2^+ companion of the Xi(b).Comment: Submitted to Physical Review Letter

    Measurements of inclusive W and Z cross sections in pp collisions at root s=7 TeV

    Get PDF
    This is the pre-print version of the Published Article, which can be accessed from the link below - Copyright @ 2011 Springer VerlagMeasurements of inclusive W and Z boson production cross sections in pp collisions at sqrt(s)=7 TeV are presented, based on 2.9 inverse picobarns of data recorded by the CMS detector at the LHC. The measurements, performed in the electron and muon decay channels, are combined to give sigma(pp to WX) times B(W to muon or electron + neutrino) = 9.95 \pm 0.07(stat.) \pm 0.28(syst.) \pm 1.09(lumi.) nb and sigma(pp to ZX) times B(Z to oppositely charged muon or electron pairs) = 0.931 \pm 0.026(stat.) \pm 0.023(syst.) \pm 0.102(lumi.) nb. Theoretical predictions, calculated at the next-to-next-to-leading order in QCD using recent parton distribution functions, are in agreement with the measured cross sections. Ratios of cross sections, which incur an experimental systematic uncertainty of less than 4%, are also reported

    Search for jet extinction in the inclusive jet-pT spectrum from proton-proton collisions at s=8 TeV

    Get PDF
    Published by the American Physical Society under the terms of the Creative Commons Attribution 3.0 License. Further distribution of this work must maintain attribution to the author(s) and the published articles title, journal citation, and DOI.The first search at the LHC for the extinction of QCD jet production is presented, using data collected with the CMS detector corresponding to an integrated luminosity of 10.7  fb−1 of proton-proton collisions at a center-of-mass energy of 8 TeV. The extinction model studied in this analysis is motivated by the search for signatures of strong gravity at the TeV scale (terascale gravity) and assumes the existence of string couplings in the strong-coupling limit. In this limit, the string model predicts the suppression of all high-transverse-momentum standard model processes, including jet production, beyond a certain energy scale. To test this prediction, the measured transverse-momentum spectrum is compared to the theoretical prediction of the standard model. No significant deficit of events is found at high transverse momentum. A 95% confidence level lower limit of 3.3 TeV is set on the extinction mass scale

    Search for three-jet resonances in pp collisions at √s=7 TeV

    Get PDF
    This is a Pre-Print version of the Article - Copyright @ 2011 APSA model-independent search for three-jet hadronic resonance production in pp collisions at a center-of-mass energy of 7 TeV has been conducted by the CMS Collaboration at the LHC, using a data sample corresponding to an integrated luminosity of 35 inverse picobarns. Events with high jet multiplicity and a large scalar sum of jet transverse momenta are analyzed. The number of expected standard model background events is found to be in good agreement with the observed events. Limits are set on a model describing the production of R-parity-violating supersymmetric gluino pairs, and gluino masses in the range of 200 to 280 GeV/c^2 are excluded at a 95% confidence level for the first time.This work is supported by the FMSR (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, and FAPESP (Brazil); MES (Bulgaria); CERN; CAS, MoST, and NSFC (China); COLCIENCIAS (Colombia); MSES (Croatia); RPF (Cyprus); Academy of Sciences and NICPB (Estonia); Academy of Finland, ME, and HIP (Finland); CEA and CNRS/IN2P3 (France); BMBF, DFG, and HGF (Germany); GSRT (Greece); OTKA and NKTH (Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); NRF andWCU (Korea); LAS (Lithuania); CINVESTAV, CONACYT, SEP, and UASLP-FAI (Mexico); PAEC (Pakistan); SCSR (Poland); FCT (Portugal); JINR (Armenia, Belarus, Georgia, Ukraine, Uzbekistan); MST and MAE (Russia); MSTD (Serbia); MICINN and CPAN (Spain); Swiss Funding Agencies (Switzerland); NSC (Taipei); TUBITAK and TAEK (Turkey); STFC (United Kingdom); DOE and NSF (USA)

    Precise mapping of the magnetic field in the CMS barrel yoke using cosmic rays

    Get PDF
    This is the Pre-print version of the Article. The official published version can be accessed from the link below - Copyright @ 2010 IOPThe CMS detector is designed around a large 4 T superconducting solenoid, enclosed in a 12 000-tonne steel return yoke. A detailed map of the magnetic field is required for the accurate simulation and reconstruction of physics events in the CMS detector, not only in the inner tracking region inside the solenoid but also in the large and complex structure of the steel yoke, which is instrumented with muon chambers. Using a large sample of cosmic muon events collected by CMS in 2008, the field in the steel of the barrel yoke has been determined with a precision of 3 to 8% depending on the location.This work is supported by FMSR (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, and FAPESP (Brazil); MES (Bulgaria); CERN; CAS, MoST, and NSFC (China); COLCIENCIAS (Colombia); MSES (Croatia); RPF (Cyprus); Academy of Sciences and NICPB (Estonia); Academy of Finland, ME, and HIP (Finland); CEA and CNRS/IN2P3 (France); BMBF, DFG, and HGF (Germany); GSRT (Greece); OTKA and NKTH (Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); NRF (Korea); LAS (Lithuania); CINVESTAV, CONACYT, SEP, and UASLP-FAI (Mexico); PAEC (Pakistan); SCSR (Poland); FCT (Portugal); JINR (Armenia, Belarus, Georgia, Ukraine, Uzbekistan); MST and MAE (Russia); MSTDS (Serbia); MICINN and CPAN (Spain); Swiss Funding Agencies (Switzerland); NSC (Taipei); TUBITAK and TAEK (Turkey); STFC (United Kingdom); DOE and NSF (USA)
    • …
    corecore