36 research outputs found

    Identification and genotyping of bacteria from paired vaginal and rectal samples from pregnant women indicates similarity between vaginal and rectal microflora

    Get PDF
    Background: The vaginal microflora is important for maintaining vaginal health and preventing infections of the reproductive tract. The rectum has been suggested as the major source for the colonisation of the vaginal econiche. Methods: To establish whether the rectum can serve as a possible bacterial reservoir for colonisation of the vaginal econiche, we cultured vaginal and rectal specimens from pregnant women at 35-37 weeks of gestation, identified the isolates to the species level with tRNA intergenic length polymorphism analysis (tDNA-PCR) and genotyped the isolates for those subjects from which the same species was isolated simultaneously vaginally and rectally, by RAPD-analysis. One vaginal and one rectal swab were collected from a total of each of 132 pregnant women at 35-37 weeks of gestation. Swabs were cultured on Columbia CNA agar and MRS agar. For each subject 4 colonies were selected for each of both sites, i.e. 8 colonies in total. Results: Among the 844 isolates that could be identified by tDNA-PCR, a total of 63 bacterial species were present, 9 (14%) only vaginally, 26 (41%) only rectally, and 28 (44%) in both vagina and rectum. A total of 121 (91.6%) of 132 vaginal samples and 51 (38.6%) of 132 rectal samples were positive for lactobacilli. L. crispatus was the most frequently isolated Lactobacillus species from the vagina (40% of the subjects were positive), followed by L. jensenii (32%), L. gasseri (30%) and L. iners (11%). L. gasseri was the most frequently isolated Lactobacillus species from the rectum (15%), followed by L. jensenii (12%), L. crispatus (11%) and L. iners (2%). A total of 47 pregnant women carried the same species vaginally and rectally. This resulted in 50 vaginal/rectal pairs of the same species, for a total of eight different species. For 34 of the 50 species pairs (68%), isolates with the same genotype were present vaginally and rectally and a high level of genotypic diversity within species per subject was also established. Conclusion: It can be concluded that there is a certain degree of correspondence between the vaginal and rectal microflora, not only with regard to species composition but also with regard to strain identity between vaginal and rectal isolates. These results support the hypothesis that the rectal microflora serves as a reservoir for colonisation of the vaginal econiche

    Multi-messenger observations of a binary neutron star merger

    Get PDF
    On 2017 August 17 a binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors. The Fermi Gamma-ray Burst Monitor independently detected a gamma-ray burst (GRB 170817A) with a time delay of ~1.7 s with respect to the merger time. From the gravitational-wave signal, the source was initially localized to a sky region of 31 deg2 at a luminosity distance of 40+8-8 Mpc and with component masses consistent with neutron stars. The component masses were later measured to be in the range 0.86 to 2.26 Mo. An extensive observing campaign was launched across the electromagnetic spectrum leading to the discovery of a bright optical transient (SSS17a, now with the IAU identification of AT 2017gfo) in NGC 4993 (at ~40 Mpc) less than 11 hours after the merger by the One- Meter, Two Hemisphere (1M2H) team using the 1 m Swope Telescope. The optical transient was independently detected by multiple teams within an hour. Subsequent observations targeted the object and its environment. Early ultraviolet observations revealed a blue transient that faded within 48 hours. Optical and infrared observations showed a redward evolution over ~10 days. Following early non-detections, X-ray and radio emission were discovered at the transient’s position ~9 and ~16 days, respectively, after the merger. Both the X-ray and radio emission likely arise from a physical process that is distinct from the one that generates the UV/optical/near-infrared emission. No ultra-high-energy gamma-rays and no neutrino candidates consistent with the source were found in follow-up searches. These observations support the hypothesis that GW170817 was produced by the merger of two neutron stars in NGC4993 followed by a short gamma-ray burst (GRB 170817A) and a kilonova/macronova powered by the radioactive decay of r-process nuclei synthesized in the ejecta

    Habitat manipulation to mitigate the impacts of invasive arthropod pests

    Get PDF
    Exotic invaders are some of the most serious insect pests of agricultural crops around the globe. Increasingly, the structure of landscape and habitat is recognized as having a major influence on both insect pests and their natural enemies. Habitat manipulation that aims at conserving natural enemies can potentially contribute to safer and more effective control of invasive pests. In this paper, we review habitat management experiments, published during the last 10 years, which have aimed to improve biological control of invasive pests. We then discuss during what conditions habitat management to conserve natural enemies is likely to be effective and how the likelihood of success of such methods can be improved. We finally suggest an ecologically driven research agenda for habitat management programmes.We acknowledge the following funding sources: the Tertiary Education Commission, New Zealand, through the Bio-Protection Research Centre, Lincoln University, New Zealand (Mattias Jonsson and Steve Wratten), the New Zealand Foundation for Research, Science and Technology (FRST); project LINX0303 (Steve Wratten, Ross Cullen, Jean Tompkins), Lincoln University, New Zealand, for a Post-graduate Scholarship to Jean Tompkins, USDA CSREES Risk Avoidance and Mitigation Program (2004-51101-02210), USDA NC SARE Project (LCN 04-249), USDA CSREES Arthropod and Nematode Biology (2004-35302-14811), North Central Regional IPM, NSF-LTER at Kellogg Biological Station (NSF DEB 0423627), and the Michigan Agricultural Experiment Station (Doug Landis)

    Assessment of resistances to multiple pathogens in experimental sweet pepper hybrids

    No full text
    The aim of this study was to assess resistance to some of the major sweet pepper pathogens [Phytophthora capsici, Pepper yellow mosaic virus (PepYMV) and Meloidogyne incognita] in a group of experimental hybrids and their respective parental lines, and to identify hybrids possibly resistant to all three pathogens. Ten parental breeding lines, thirty experimental hybrids and seven commercial controls (Konan-R, Magali-R, Martha-R, Stephany, Mallorca, Magnata Super and Criollo de Morelos-334) were used. Each experiment was set up in a randomized complete block design with three replications and plots consisting of 16 plants. For assessment of resistance to P. capsici and PepYMV, the percent of asymptomatic plants was considered. In evaluating reactions to M. incognita, both the nematode reproduction index and the nematode reproduction factor were calculated. Five hybrids were found with resistance to all three pathogens. For all three pathogens, there was evidence that hybrids with two resistant parental lines showed slightly higher levels of pathogen resistance than those with only one resistant parental line. © 2017, Sociedade de Olericultura do Brasil. All rights reserved
    corecore