90 research outputs found
Chimeric design, synthesis, and biological assays of a new nonpeptide insulin-mimetic vanadium compound to inhibit protein tyrosine phosphatase 1B
Prior to its total synthesis, a new vanadium coordination compound, called TSAG0101,
was computationally designed to inhibit the enzyme protein tyrosine phosphatase 1B (PTP1B).
The PTP1B acts as a negative regulator of insulin signaling by blocking the active site where
phosphate hydrolysis of the insulin receptor takes place. TSAG001, [VVO2(OH)(picolinamide)],
was characterized by infrared (IR) and nuclear magnetic resonance (NMR) spectroscopy;
IR: ν/cm−1 3,570 (NH), 1,627 (C=O, coordinated), 1,417 (C−N), 970/842 (O=V=O), 727 δ.
(pyridine ring); 13C NMR: 5 bands between 122 and 151 ppm and carbonyl C shifted to 180
ppm; and 1H NMR: 4 broad bands from 7.6 to 8.2 ppm and NH2 shifted to 8.8 ppm. In aqueous
solution, in presence or absence of sodium citrate as a biologically relevant and ubiquitous
chelator, TSAG0101 undergoes neither ligand exchange nor reduction of its central vanadium
atom during 24 hours. TSAG0101 shows blood glucose lowering effects in rats but it produced
no alteration of basal- or glucose-induced insulin secretion on β cells during in vitro tests, all
of which excludes a direct mechanism evidencing the extrapancreatic nature of its activity. The
lethal dose (LD50) of TSAG0101 was determined in Wistar mice yielding a value of 412 mg/kg.
This value is one of the highest among vanadium compounds and classifies it as a mild toxicity
agent when compared with literature data. Due to its nonsubstituted, small-sized scaffold
design, its remarkable complex stability, and low toxicity; TSAG0101 should be considered as
an innovative insulin-mimetic principle with promising properties and, therefore, could become
a new lead compound for potential nonpeptide PTP1B inhibitors in antidiabetic drug research.
In view of the present work, the inhibitory concentration (IC50) and extended solution stability
will be tested
Characterization of the TRBP domain required for Dicer interaction and function in RNA interference
<p>Abstract</p> <p>Background</p> <p>Dicer, Ago2 and TRBP are the minimum components of the human RNA-induced silencing complex (RISC). While Dicer and Ago2 are RNases, TRBP is the double-stranded RNA binding protein (dsRBP) that loads small interfering RNA into the RISC. TRBP binds directly to Dicer through its C-terminal domain.</p> <p>Results</p> <p>We show that the TRBP binding site in Dicer is a 165 amino acid (aa) region located between the ATPase and the helicase domains. The binding site in TRBP is a 69 aa domain, called C4, located at the C-terminal end of TRBP. The TRBP1 and TRBP2 isoforms, but not TRBPs lacking the C4 site (TRBPsΔC4), co-immunoprecipitated with Dicer. The C4 domain is therefore necessary to bind Dicer, irrespective of the presence of RNA. Immunofluorescence shows that while full-length TRBPs colocalize with Dicer, TRBPsΔC4 do not. <it>tarbp2</it><sup>-/- </sup>cells, which do not express TRBP, do not support RNA interference (RNAi) mediated by short hairpin or micro RNAs against EGFP. Both TRBPs, but not TRBPsΔC4, were able to rescue RNAi function. In human cells with low RNAi activity, addition of TRBP1 or 2, but not TRBPsΔC4, rescued RNAi function.</p> <p>Conclusion</p> <p>The mapping of the interaction sites between TRBP and Dicer show unique domains that are required for their binding. Since TRBPsΔC4 do not interact or colocalize with Dicer, we suggest that TRBP and Dicer, both dsRBPs, do not interact through bound dsRNA. TRBPs, but not TRBPsΔC4, rescue RNAi activity in RNAi-compromised cells, indicating that the binding of Dicer to TRBP is critical for RNAi function.</p
Activation of the SPHK/S1P signalling pathway is coupled to muscarinic receptor-dependent regulation of peripheral airways
BACKGROUND: In peripheral airways, acetylcholine induces contraction via activation of muscarinic M2-and M3-receptor subtypes (M(2)R and M(3)R). Cholinergic hypersensitivity is associated with chronic obstructive pulmonary disease and asthma, and therefore the identification of muscarinic signaling pathways are of great therapeutic interest. A pathway that has been shown to be activated via MR and to increase [Ca(2+)](i )includes the activation of sphingosine kinases (SPHK) and the generation of the bioactive sphingolipid sphingosine 1-phosphate (S1P). Whether the SPHK/S1P signaling pathway is integrated in the muscarinic control of peripheral airways is not known. METHODS: To address this issue, we studied precision cut lung slices derived from FVB and M(2)R-KO and M(3)R-KO mice. RESULTS: In peripheral airways of FVB, wild-type, and MR-deficient mice, SPHK1 was mainly localized to smooth muscle. Muscarine induced a constriction in all investigated mouse strains which was reduced by inhibition of SPHK using D, L-threo-dihydrosphingosine (DHS) and N, N-dimethyl-sphingosine (DMS) but not by N-acetylsphingosine (N-AcS), a structurally related agent that does not affect SPHK function. The initial phase of constriction was nearly absent in peripheral airways of M(3)R-KO mice when SPHK was inhibited by DHS and DMS but was unaffected in M(2)R-KO mice. Quantitative RT-PCR revealed that the disruption of the M(2)R and M(3)R genes had no significant effect on the expression levels of the SPHK1-isoform in peripheral airways. CONCLUSION: These results demonstrate that the SPHK/S1P signaling pathway contributes to cholinergic constriction of murine peripheral airways. In addition, our data strongly suggest that SPHK is activated via the M(2)R. Given the important role of muscarinic mechanisms in pulmonary disease, these findings should be of considerable therapeutic relevance
Tolerance to coxibs in patients with intolerance to non-steroidal anti-inflammatory drugs (NSAIDs): a systematic structured review of the literature
Adverse events triggered by non-steroidal anti-inflammatory drugs (NSAIDs) are among the most common drug-related intolerance reactions in medicine; they are possibly related to inhibition of cyclooxygenase-1. Coxibs, preferentially inhibiting cyclooxygenase-2, may therefore represent safe alternatives in patients with NSAID intolerance. We reviewed the literature in a systematic and structured manner to identify and evaluate studies on the tolerance of coxibs in patients with NSAID intolerance. We searched MEDLINE (1966–2006), the COCHRANE LIBRARY (4th Issue 2006) and EMBASE (1966–2006) up to December 9, 2006, and analysed all publications included using a predefined evaluation sheet. Symptoms and severity of adverse events to coxibs were analysed based on all articles comprising such information. Subsequently, the probability for adverse events triggered by coxibs was determined on analyses of double-blind prospective trials only. Among 3,304 patients with NSAID intolerance, 119 adverse events occurred under coxib medication. All adverse events, except two, have been allergic/urticarial in nature; none was lethal, but two were graded as life-threatening (grade 4). The two non-allergic adverse events were described as a grade 1 upper respiratory tract haemorrhage, and a grade 1 gastrointestinal symptom, respectively. In 13 double-blind prospective studies comprising a total of 591 patients with NSAID intolerance, only 13 adverse reactions to coxib provocations were observed. The triggering coxibs were rofecoxib (2/286), celecoxib (6/208), etoricoxib (4/56), and valdecoxib (1/41). This review documents the good tolerability of coxibs in patients with NSAID intolerance, for whom access to this class of drugs for short-term treatment of pain and inflammation is advantageous
Resolution of inflammation: a new therapeutic frontier
Dysregulated inflammation is a central pathological process in diverse disease states. Traditionally, therapeutic approaches have sought to modulate the pro- or anti-inflammatory limbs of inflammation, with mixed success. However, insight into the pathways by which inflammation is resolved has highlighted novel opportunities to pharmacologically manipulate these processes — a strategy that might represent a complementary (and perhaps even superior) therapeutic approach. This Review discusses the state of the art in the biology of resolution of inflammation, highlighting the opportunities and challenges for translational research in this field
Worldwide trends in diabetes since 1980: a pooled analysis of 751 population-based studies with 4.4 million participants
BACKGROUND: One of the global targets for non-communicable diseases is to halt, by 2025, the rise in the age-standardised adult prevalence of diabetes at its 2010 levels. We aimed to estimate worldwide trends in diabetes, how likely it is for countries to achieve the global target, and how changes in prevalence, together with population growth and ageing, are affecting the number of adults with diabetes. METHODS: We pooled data from population-based studies that had collected data on diabetes through measurement of its biomarkers. We used a Bayesian hierarchical model to estimate trends in diabetes prevalence—defined as fasting plasma glucose of 7·0 mmol/L or higher, or history of diagnosis with diabetes, or use of insulin or oral hypoglycaemic drugs—in 200 countries and territories in 21 regions, by sex and from 1980 to 2014. We also calculated the posterior probability of meeting the global diabetes target if post-2000 trends continue. FINDINGS: We used data from 751 studies including 4 372 000 adults from 146 of the 200 countries we make estimates for. Global age-standardised diabetes prevalence increased from 4·3% (95% credible interval 2·4–7·0) in 1980 to 9·0% (7·2–11·1) in 2014 in men, and from 5·0% (2·9–7·9) to 7·9% (6·4–9·7) in women. The number of adults with diabetes in the world increased from 108 million in 1980 to 422 million in 2014 (28·5% due to the rise in prevalence, 39·7% due to population growth and ageing, and 31·8% due to interaction of these two factors). Age-standardised adult diabetes prevalence in 2014 was lowest in northwestern Europe, and highest in Polynesia and Micronesia, at nearly 25%, followed by Melanesia and the Middle East and north Africa. Between 1980 and 2014 there was little change in age-standardised diabetes prevalence in adult women in continental western Europe, although crude prevalence rose because of ageing of the population. By contrast, age-standardised adult prevalence rose by 15 percentage points in men and women in Polynesia and Micronesia. In 2014, American Samoa had the highest national prevalence of diabetes (>30% in both sexes), with age-standardised adult prevalence also higher than 25% in some other islands in Polynesia and Micronesia. If post-2000 trends continue, the probability of meeting the global target of halting the rise in the prevalence of diabetes by 2025 at the 2010 level worldwide is lower than 1% for men and is 1% for women. Only nine countries for men and 29 countries for women, mostly in western Europe, have a 50% or higher probability of meeting the global target. INTERPRETATION: Since 1980, age-standardised diabetes prevalence in adults has increased, or at best remained unchanged, in every country. Together with population growth and ageing, this rise has led to a near quadrupling of the number of adults with diabetes worldwide. The burden of diabetes, both in terms of prevalence and number of adults affected, has increased faster in low-income and middle-income countries than in high-income countries. FUNDING: Wellcome Trust
Worldwide trends in body-mass index, underweight, overweight, and obesity from 1975 to 2016: a pooled analysis of 2416 population-based measurement studies in 128·9 million children, adolescents, and adults.
BACKGROUND: Underweight, overweight, and obesity in childhood and adolescence are associated with adverse health consequences throughout the life-course. Our aim was to estimate worldwide trends in mean body-mass index (BMI) and a comprehensive set of BMI categories that cover underweight to obesity in children and adolescents, and to compare trends with those of adults. METHODS: We pooled 2416 population-based studies with measurements of height and weight on 128·9 million participants aged 5 years and older, including 31·5 million aged 5-19 years. We used a Bayesian hierarchical model to estimate trends from 1975 to 2016 in 200 countries for mean BMI and for prevalence of BMI in the following categories for children and adolescents aged 5-19 years: more than 2 SD below the median of the WHO growth reference for children and adolescents (referred to as moderate and severe underweight hereafter), 2 SD to more than 1 SD below the median (mild underweight), 1 SD below the median to 1 SD above the median (healthy weight), more than 1 SD to 2 SD above the median (overweight but not obese), and more than 2 SD above the median (obesity). FINDINGS: Regional change in age-standardised mean BMI in girls from 1975 to 2016 ranged from virtually no change (-0·01 kg/m2 per decade; 95% credible interval -0·42 to 0·39, posterior probability [PP] of the observed decrease being a true decrease=0·5098) in eastern Europe to an increase of 1·00 kg/m2 per decade (0·69-1·35, PP>0·9999) in central Latin America and an increase of 0·95 kg/m2 per decade (0·64-1·25, PP>0·9999) in Polynesia and Micronesia. The range for boys was from a non-significant increase of 0·09 kg/m2 per decade (-0·33 to 0·49, PP=0·6926) in eastern Europe to an increase of 0·77 kg/m2 per decade (0·50-1·06, PP>0·9999) in Polynesia and Micronesia. Trends in mean BMI have recently flattened in northwestern Europe and the high-income English-speaking and Asia-Pacific regions for both sexes, southwestern Europe for boys, and central and Andean Latin America for girls. By contrast, the rise in BMI has accelerated in east and south Asia for both sexes, and southeast Asia for boys. Global age-standardised prevalence of obesity increased from 0·7% (0·4-1·2) in 1975 to 5·6% (4·8-6·5) in 2016 in girls, and from 0·9% (0·5-1·3) in 1975 to 7·8% (6·7-9·1) in 2016 in boys; the prevalence of moderate and severe underweight decreased from 9·2% (6·0-12·9) in 1975 to 8·4% (6·8-10·1) in 2016 in girls and from 14·8% (10·4-19·5) in 1975 to 12·4% (10·3-14·5) in 2016 in boys. Prevalence of moderate and severe underweight was highest in India, at 22·7% (16·7-29·6) among girls and 30·7% (23·5-38·0) among boys. Prevalence of obesity was more than 30% in girls in Nauru, the Cook Islands, and Palau; and boys in the Cook Islands, Nauru, Palau, Niue, and American Samoa in 2016. Prevalence of obesity was about 20% or more in several countries in Polynesia and Micronesia, the Middle East and north Africa, the Caribbean, and the USA. In 2016, 75 (44-117) million girls and 117 (70-178) million boys worldwide were moderately or severely underweight. In the same year, 50 (24-89) million girls and 74 (39-125) million boys worldwide were obese. INTERPRETATION: The rising trends in children's and adolescents' BMI have plateaued in many high-income countries, albeit at high levels, but have accelerated in parts of Asia, with trends no longer correlated with those of adults. FUNDING: Wellcome Trust, AstraZeneca Young Health Programme
Recommended from our members
Global variation in diabetes diagnosis and prevalence based on fasting glucose and hemoglobin A1c
Fasting plasma glucose (FPG) and hemoglobin A1c (HbA1c) are both used to diagnose diabetes, but these measurements can identify different people as having diabetes. We used data from 117 population-based studies and quantified, in different world regions, the prevalence of diagnosed diabetes, and whether those who were previously undiagnosed and detected as having diabetes in survey screening, had elevated FPG, HbA1c or both. We developed prediction equations for estimating the probability that a person without previously diagnosed diabetes, and at a specific level of FPG, had elevated HbA1c, and vice versa. The age-standardized proportion of diabetes that was previously undiagnosed and detected in survey screening ranged from 30% in the high-income western region to 66% in south Asia. Among those with screen-detected diabetes with either test, the age-standardized proportion who had elevated levels of both FPG and HbA1c was 29–39% across regions; the remainder had discordant elevation of FPG or HbA1c. In most low- and middle-income regions, isolated elevated HbA1c was more common than isolated elevated FPG. In these regions, the use of FPG alone may delay diabetes diagnosis and underestimate diabetes prevalence. Our prediction equations help allocate finite resources for measuring HbA1c to reduce the global shortfall in diabetes diagnosis and surveillance
- …