32 research outputs found

    Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition)

    Get PDF
    In 2008 we published the first set of guidelines for standardizing research in autophagy. Since then, research on this topic has continued to accelerate, and many new scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Accordingly, it is important to update these guidelines for monitoring autophagy in different organisms. Various reviews have described the range of assays that have been used for this purpose. Nevertheless, there continues to be confusion regarding acceptable methods to measure autophagy, especially in multicellular eukaryotes. For example, a key point that needs to be emphasized is that there is a difference between measurements that monitor the numbers or volume of autophagic elements (e.g., autophagosomes or autolysosomes) at any stage of the autophagic process versus those that measure fl ux through the autophagy pathway (i.e., the complete process including the amount and rate of cargo sequestered and degraded). In particular, a block in macroautophagy that results in autophagosome accumulation must be differentiated from stimuli that increase autophagic activity, defi ned as increased autophagy induction coupled with increased delivery to, and degradation within, lysosomes (inmost higher eukaryotes and some protists such as Dictyostelium ) or the vacuole (in plants and fungi). In other words, it is especially important that investigators new to the fi eld understand that the appearance of more autophagosomes does not necessarily equate with more autophagy. In fact, in many cases, autophagosomes accumulate because of a block in trafficking to lysosomes without a concomitant change in autophagosome biogenesis, whereas an increase in autolysosomes may reflect a reduction in degradative activity. It is worth emphasizing here that lysosomal digestion is a stage of autophagy and evaluating its competence is a crucial part of the evaluation of autophagic flux, or complete autophagy. Here, we present a set of guidelines for the selection and interpretation of methods for use by investigators who aim to examine macroautophagy and related processes, as well as for reviewers who need to provide realistic and reasonable critiques of papers that are focused on these processes. These guidelines are not meant to be a formulaic set of rules, because the appropriate assays depend in part on the question being asked and the system being used. In addition, we emphasize that no individual assay is guaranteed to be the most appropriate one in every situation, and we strongly recommend the use of multiple assays to monitor autophagy. Along these lines, because of the potential for pleiotropic effects due to blocking autophagy through genetic manipulation it is imperative to delete or knock down more than one autophagy-related gene. In addition, some individual Atg proteins, or groups of proteins, are involved in other cellular pathways so not all Atg proteins can be used as a specific marker for an autophagic process. In these guidelines, we consider these various methods of assessing autophagy and what information can, or cannot, be obtained from them. Finally, by discussing the merits and limits of particular autophagy assays, we hope to encourage technical innovation in the field

    Vectorial Acylation in \u3ci\u3eSaccharomyces cerevisiae\u3c/i\u3e

    Get PDF
    In Saccharomyces cerevisiae Fat1p and fatty acyl-CoA synthetase (FACS) are hypothesized to couple import and activation of exogenous fatty acids by a process called vectorial acylation. Molecular genetic and biochemical studies were used to define further the functional and physical interactions between these proteins. Multicopy extragenic suppressors were selected in strains carrying deletions in FAA1 and FAA4 or FAA1 and FAT1. Each strain is unable to grow under synthetic lethal conditions when exogenous long-chain fatty acids are required, and neither strain accumulates the fluorescent long-chain fatty acid C1-BODIPY-C12 indicating a fatty acid transport defect. By using these phenotypes as selective screens, plasmids were identified encoding FAA1, FAT1, and FAA4 in the faa1Δ faa4Δ strain and encoding FAA1 and FAT1 in the faa1Δ fat1Δ strain. Multicopy FAA4 could not suppress the growth defect in the faa1Δ fat1Δ strain indicating some essential functions of Fat1p cannot be performed by Faa4p. Chromosomally encoded FAA1 and FAT1 are not able to suppress the growth deficiencies of the fat1Δ faa1Δ and faa1Δ faa4Δ strains, respectively, indicating Faa1p and Fat1p play distinct roles in the fatty acid import process. When expressed from a 2μ plasmid, Fat1p contributes significant oleoyl-CoA synthetase activity, which indicates vectorial esterification and metabolic trapping are the driving forces behind import. Evidence of a physical interaction between Fat1p and FACS was provided using three independent biochemical approaches. First, a C-terminal peptide of Fat1p deficient in fatty acid transport exerted a dominant negative effect against long-chain acyl-CoA synthetase activity. Second, protein fusions employing Faa1p as bait and portions of Fat1p as trap were active when tested using the yeast two-hybrid system. Third, co-expressed, differentially tagged Fat1p and Faa1p or Faa4p were co-immunoprecipitated. Collectively, these data support the hypothesis that fatty acid import by vectorial acylation in yeast requires a multiprotein complex, which consists of Fat1p and Faa1p or Faa4p

    Acyl-coenzyme A organizes laterally in membranes and is recognized specifically by acyl-coenzyme A binding protein

    Get PDF
    AbstractLong chain acyl-coenzyme A (acyl-CoA) is a biochemically important amphiphilic molecule that is known to partition strongly into membranes by insertion of the acyl chain. At present, microscopically resolved evidence is lacking on how acyl-CoA influences and organizes laterally in membranes. By atomic force microscopy (AFM) imaging of membranes exposed to acyl-CoA in μM concentrations, it is shown that aggregate formation takes place within the membrane upon long-time exposure. It is known that acyl-CoA is bound by acyl-CoA binding protein (ACBP) with high affinity and specificity and that ACBP may bind and desorb membrane-bound acyl-CoA via a partly unknown mechanism. Following incubation with acyl-CoA, it is shown that ACBP is able to reverse the formation of acyl-CoA aggregates and to associate peripherally with acyl-CoA on the membrane surface. Our microscopic results point to the role of ACBP as an intermembrane transporter of acyl-CoA and demonstrate the ability of AFM to reveal the remodelling of membranes by surfactants and proteins

    Vectorial Acylation in \u3ci\u3eSaccharomyces cerevisiae\u3c/i\u3e

    No full text
    In Saccharomyces cerevisiae Fat1p and fatty acyl-CoA synthetase (FACS) are hypothesized to couple import and activation of exogenous fatty acids by a process called vectorial acylation. Molecular genetic and biochemical studies were used to define further the functional and physical interactions between these proteins. Multicopy extragenic suppressors were selected in strains carrying deletions in FAA1 and FAA4 or FAA1 and FAT1. Each strain is unable to grow under synthetic lethal conditions when exogenous long-chain fatty acids are required, and neither strain accumulates the fluorescent long-chain fatty acid C1-BODIPY-C12 indicating a fatty acid transport defect. By using these phenotypes as selective screens, plasmids were identified encoding FAA1, FAT1, and FAA4 in the faa1Δ faa4Δ strain and encoding FAA1 and FAT1 in the faa1Δ fat1Δ strain. Multicopy FAA4 could not suppress the growth defect in the faa1Δ fat1Δ strain indicating some essential functions of Fat1p cannot be performed by Faa4p. Chromosomally encoded FAA1 and FAT1 are not able to suppress the growth deficiencies of the fat1Δ faa1Δ and faa1Δ faa4Δ strains, respectively, indicating Faa1p and Fat1p play distinct roles in the fatty acid import process. When expressed from a 2μ plasmid, Fat1p contributes significant oleoyl-CoA synthetase activity, which indicates vectorial esterification and metabolic trapping are the driving forces behind import. Evidence of a physical interaction between Fat1p and FACS was provided using three independent biochemical approaches. First, a C-terminal peptide of Fat1p deficient in fatty acid transport exerted a dominant negative effect against long-chain acyl-CoA synthetase activity. Second, protein fusions employing Faa1p as bait and portions of Fat1p as trap were active when tested using the yeast two-hybrid system. Third, co-expressed, differentially tagged Fat1p and Faa1p or Faa4p were co-immunoprecipitated. Collectively, these data support the hypothesis that fatty acid import by vectorial acylation in yeast requires a multiprotein complex, which consists of Fat1p and Faa1p or Faa4p
    corecore