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Vectorial Acylation in Saccharomyces cerevisiae
Fat1p AND FATTY ACYL-CoA SYNTHETASE ARE INTERACTING COMPONENTS OF A FATTY ACID
IMPORT COMPLEX*
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and Concetta C. DiRusso¶

From the Center for Cardiovascular Sciences, Albany Medical College, Albany, New York 12208

In Saccharomyces cerevisiae Fat1p and fatty acyl-CoA
synthetase (FACS) are hypothesized to couple import and
activation of exogenous fatty acids by a process called
vectorial acylation. Molecular genetic and biochemical
studies were used to define further the functional and
physical interactions between these proteins. Multicopy
extragenic suppressors were selected in strains carrying
deletions in FAA1 and FAA4 or FAA1 and FAT1. Each
strain is unable to grow under synthetic lethal conditions
when exogenous long-chain fatty acids are required, and
neither strain accumulates the fluorescent long-chain
fatty acid C1-BODIPY-C12 indicating a fatty acid transport
defect. By using these phenotypes as selective screens,
plasmids were identified encoding FAA1, FAT1, and FAA4
in the faa1� faa4� strain and encoding FAA1 and FAT1 in
the faa1� fat1� strain. Multicopy FAA4 could not sup-
press the growth defect in the faa1� fat1� strain indicat-
ing some essential functions of Fat1p cannot be per-
formed by Faa4p. Chromosomally encoded FAA1 and
FAT1 are not able to suppress the growth deficiencies of
the fat1� faa1� and faa1� faa4� strains, respectively,
indicating Faa1p and Fat1p play distinct roles in the fatty
acid import process. When expressed from a 2� plasmid,
Fat1p contributes significant oleoyl-CoA synthetase ac-
tivity, which indicates vectorial esterification and meta-
bolic trapping are the driving forces behind import. Evi-
dence of a physical interaction between Fat1p and FACS
was provided using three independent biochemical ap-
proaches. First, a C-terminal peptide of Fat1p deficient in
fatty acid transport exerted a dominant negative effect
against long-chain acyl-CoA synthetase activity. Second,
protein fusions employing Faa1p as bait and portions of
Fat1p as trap were active when tested using the yeast
two-hybrid system. Third, co-expressed, differentially
tagged Fat1p and Faa1p or Faa4p were co-immunopre-
cipitated. Collectively, these data support the hypothesis
that fatty acid import by vectorial acylation in yeast re-
quires a multiprotein complex, which consists of Fat1p
and Faa1p or Faa4p.

Biological membranes are complex in both their protein and
lipid compositions. This complexity is essential and contributes
to the barrier function of the membrane and to selectively
regulated transport of molecules into and out of the cell. Unlike
hydrophilic molecules such as sugars and amino acids, hydro-
phobic fatty acids are able to dissolve in the membrane, and as
a consequence, the processes governing their regulated move-
ment across membranes are likely to be quite distinct. Recent
investigations into the problem of fatty acid transport have
intensified due to findings that exogenous fatty acids influence
a number of important cellular functions, including signal
transduction and transcriptional control. To date, several dis-
tinct membrane-bound and membrane-associated proteins
have been identified as components of fatty acid import sys-
tems in eukaryotic cells. Most notable among these are fatty
acid translocase (FAT,1 the murine homologue to CD36) (1, 2),
fatty acid transport protein (FATP) (3), and fatty acyl-CoA
synthetase (3–6). FAT was identified following protein modifi-
cation using sulfo-N-succinimidyl oleate (7), whereas FATP
and fatty acyl-CoA synthetase were both identified using ex-
pression cloning (3). Both FAT and FATP have been claimed to
be fatty acid transport proteins (1, 8, 9). Despite these claims,
there is controversy surrounding the classification of FAT/
CD36 and FATP as bona fide integral membrane-bound fatty
acid transporters (10). Indeed, there are gnawing questions as
to whether these proteins actually function as components of a
fatty acid delivery system (i.e. FAT/DC36) or as components of
a utilization driven fatty acid import system (i.e. FATP), which
also includes fatty acyl-CoA synthetase (2, 4, 8, 10, 11). In this
regard, proteins identified as required for fatty acid transport
may function not as transport proteins per se but in an alter-
native manner, perhaps by promoting selectivity and specific-
ity of fatty acid delivery to downstream metabolic events.

The best characterized fatty acid transport system is that
found in Escherichia coli (4). In this case, the specific integral
outer membrane protein, FadL, is required for long-chain fatty
acid binding and transport across that membrane. The fatty
acid ligands must then traverse the bacterial periplasmic space
and the inner membrane. No inner membrane proteins have
been identified that are required for this process. On the basis
of studies defining the energetics of fatty acid transport, we
suggested protonated fatty acids flip across the inner mem-
brane and are subsequently abstracted from the inner mem-
brane concomitant with activation by fatty acyl-CoA synthe-
tase (12). In this manner, exogenous fatty acids are
metabolically trapped as CoA thioesters upon transport, which
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in turn generates a concentration gradient further driving the
system. Overath and colleagues (5) coined the term “vectorial
acylation” to describe this process at the time they identified
the structural gene for the E. coli fatty acyl-CoA synthetase
(fadD). This postulate was initially expanded by Frerman and
Bennett (6) and subsequently by our laboratory (4, 12) as the
underlying mechanism driving long-chain fatty acid transport
in bacteria. Although at the time the model of vectorial acyla-
tion was proposed the bacterial fatty acid transporter FadL had
not been identified, our subsequent studies have clearly shown
that both FadL and fatty acyl-CoA synthetase are required for
fatty acid transport in E. coli.

By using the yeast Saccharomyces cerevisiae as a model
eukaryotic system, we have recently shown the fatty acyl-CoA
synthetases Faa1p or Faa4p function in the fatty acid transport
system presumably by activating exogenous fatty acids con-
comitant with transport (11). This finding presents somewhat
of a conundrum as we have also shown that long-chain fatty
acid import in yeast requires Fat1p, the yeast orthologue of the
murine FATP1 (13). One of the central questions we are now
faced with is to determine the mechanisms by which Fat1p and
fatty acyl-CoA synthetase (Faa1p and/or Faa4p) work in con-
cert to promote fatty acid import. A similar situation appears to
be operational in murine adipocytes, where there are data
supporting a functional association of mmFATP1 with fatty
acyl-CoA synthetase (3, 15). We suggest vectorial acylation is
one general mechanism of fatty acid import, which functions to
promote the regulated import and metabolic trapping of exog-
enous long-chain fatty acids.

In our prior investigations into fatty acid import in yeast, we
used reverse genetic approaches to demonstrate this process
requires the yeast orthologue of mmFATP (Fat1p) and fatty
acyl-CoA synthetase (Faa1p or Faa4p) (11, 13, 14). Despite the
information gleaned from these studies, there are no data dem-
onstrating these proteins function cooperatively in a physical
complex, and there is no information as to whether there are
additional proteins involved in mediating the regulated import
of exogenous long-chain fatty acids. In the present work, we
sought to identify additional components required for fatty acid
transport and to confirm the importance of Fat1p and fatty
acyl-CoA synthetase (Faa1p and Faa4p) by using a genetic
approach. A valuable molecular-genetic method for the identi-
fication of participants in multicomponent cellular processes is
the selection of plasmid-encoded multicopy extragenic suppres-
sors (16). The rationale behind this approach is that the altered
phenotype resulting from a deficiency in one participant can be
suppressed by overexpression of another participant required
for the same process (16). In this manner, we sought to identify
plasmid-encoded multicopy extragenic suppressors of the defi-
ciency in fatty acid import caused by deletion of FAT1 and/or
FAA1 and FAA4. We report that plasmids encoding Fat1p,
Faa1p, and Faa4p were identified in a screen for multicopy
extragenic suppressors of the transport and activation defi-
ciency of a faa1� faa4� strain, and plasmids encoding only
Fat1p and Faa1p were identified as multicopy extragenic sup-

pressors of the transport deficiency of a faa1� fat1� strain.
Additional biochemical evidence is provided demonstrating
Fat1p and acyl-CoA synthetase interact in a physical complex.
This work establishes for the first time a genetic, physical, and
functional linkage between Fat1p and fatty acyl-CoA synthe-
tase and substantiates the hypothesis that these proteins, per-
haps exclusively, are required for long-chain fatty acid trans-
port in yeast.

EXPERIMENTAL PROCEDURES

Strains, Media, and Materials—The S. cerevisiae strains used in this
study are listed in Table I. The fat1�::G418 mutation was introduced by
transformation of the strain of interest with linear DNA generated by
amplification of the kanamycin resistance cassette (resulting in G418
resistance) using oligonucleotides complementary to both FAT1 and the
cassette as described (17). The oligonucleotide for the coding strand was
5�-CACTGTCAAGAAGGGCAAGAAGGCAGCAGTATGGCTTGGGCA-
TAGGCCACTAGTGGATCTG-3�, and the oligonucleotide for the
template strand was 5�-CCACTGGATCATTCGTAAGTGATCCTGAAA-
CAAACCATTCAGCAGCTGAAGCTTCGTACGC-3�. Chromosomal re-
placement of the native gene was confirmed by Southern analysis of
chromosomal DNA from the transformants by comparison to DNA
obtained from the parental strain. Yeast strains were transformed by
the lithium acetate method (18).

YPDA consisted of 1% yeast extract, 2% peptone, 2% dextrose, and 20
mg/liter adenine hemisulfate. Yeast-supplemented minimal media con-
tained 0.67% yeast nitrogen base (YNB), 2% dextrose, adenine (20
mg/liter), uracil (20 mg/liter), and amino acids as required (arginine,
tryptophan, methionine, histidine, and tyrosine (20 mg/liter); lysine (30
mg/liter); and leucine (100 mg/liter)). To assess growth when fatty-acid
synthase was inhibited, cells were grown on YNBD or YPDA plates
supplemented with 45 �M cerulenin and 100 �M oleic acid unless oth-
erwise indicated. Growth in liquid culture and on plates was at 30 °C.

Yeast extract, yeast peptone, and yeast nitrogen base were obtained
from Difco. Oleic acid was obtained from Sigma. 3H- or 14C-labeled fatty
acids were from PerkinElmer Life Sciences and American Radiochemi-
cals. C1-BODIPY-C12 was purchased from Molecular Probes. Enzymes
required for all DNA manipulations were from Promega, Invitrogen,
New England Biolabs, U. S. Biochemical Corp., or Roche Molecular
Biochemicals. Anti-V5 antibody and anti-T7 antibodies were purchased
from Invitrogen and Novagen, respectively. Anti-Pma1p was the gift of
Dr. Günther Daum (Technische Universität Graz, Graz, Austria).

Complementation of faa1� faa4� and faa1� fat1� Using Multicopy
Extragenic Suppression—Cells of the faa1� faa4� strain or faa1� fat1�
strain were rendered competent using lithium acetate as noted above,
transformed with a yeast multicopy library in YEp24, and transfor-
mants selected on YNBD containing the appropriate supplements but
lacking uracil (19). Thirty thousand individual Ura� transformants
were selected from the library and were screened for growth following
replica plating on YPD plates containing 45 �M cerulenin and 100 �M

oleic acid (YPD-CER-OLE). Transformants that were able to grow on
YPD-CER-OLE were colony-purified on the same media and pheno-
types validated on YPD-CER-OLE. Plasmids were isolated from those
that retained positive growth on all three media and retransformed into
the faa1� faa4� and faa1� fat1� strains. Additionally, the same plas-
mids were propagated in the E. coli strain DH5�, purified using Qia-
Prep columns (Qiagen), and sequenced using two plasmid-specific prim-
ers flanking the insert (upstream, 5�-GGAGCCACTATCGACTACGC-
3�; downstream, 5�-CCTGTGGCGCCGGTGATG-3�) using an Applied
Biosystems automated fluorescence DNA sequencer. The sequences
obtained were compared with the Saccharomyces genome data base
for identification.

Assessment of Fatty Acid Import Capacity—Fatty acid import was

TABLE I
Yeast strains used in this study

Name Relevant genotype Complete genotype (Ref.)

YB332 Wild type MATa ura3–52 his3�200 ade2–101 lys2–801 leu2–3,112 (30)
YB497 faa1� MATa ura3–52 his3�200 ade2–101 lys2–801 leu2–3,112 faa1�::HIS3 (30)
YB524 faa4� MATa ura3–52 his3�200 ade2–101 lys2–801 leu2–3,112 faa4�:LYS2 (30)
LS2020 fat1� MATa ura3–52 his3�200 ade2–101 lys2–801 leu2–3,112 fat1�::G418 (this study)
YB525 faa1�faa4� MATa ura3–52 his3�200 ade2–101 lys2–801 leu2–3,112 faa1�::HIS3 faa4�:LYS2 (31)
LS2086 faa1�fat1� MATa ura3–52 his3�200 ade2–101 lys2–801 leu2–3,112 faa1�::HIS3 fat1�::G418 (this study)
LS2087 faa4�fat1� MATa ura3–52 his3�200 ade2–101 lys2–801 leu2–3,112 faa4�:LYS2 fat1�::G418 (this study)
LS2089 faa1�faa4�fat1� MATa ura3–52 his3�200 ade2–101 lys2–801 leu2–3,112 faa1�::HIS3 faa4::LYS2 fat1�::G418 (this study)
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assessed using confocal laser scanning microscopy to detect accumula-
tion of the fluorescent long-chain fatty acid analogue 4,4-difluoro-5-
methyl-4-bora-3a,4a-diaza-s-indacene-3-dodecanoic acid (C1-BODIPY-
C12) as described previously (13). Following growth under selective
conditions, cells were harvested, washed with phosphate-buffered sa-
line (PBS) and resuspended in 0.1 volume of PBS. All steps were
performed at room temperature. Washed cells were incubated with 10
�M C1-BODIPY-C12 for 60 s, washed with PBS containing 50 �M fatty
acid-free bovine serum albumin (two times), PBS, resuspended in PBS,
and visualized on an NORAN-OZ confocal laser scanning microscopy,
interfaced with a Nikon Diaphot 200 inverted microscope equipped with
a PlanApo �60, 1.4 NA oil-immersion objective lens. The instrument
settings for brightness, contrast, laser power, and slit size were opti-
mized for the brightest sample to ensure that the confocal laser scan-
ning microscopy was set for its full dynamic range. The same settings
were used for all subsequent image collections.

Quantification of Fatty Acyl-CoA Synthetase Activities—Cells were
grown from overnight cultures in YNBD (with appropriate supple-
ments) and grown to A600 of 1.0. Following growth, cells were harvested
by centrifugation, washed twice with PBS, and resuspended to a den-
sity of 1.2 � 109 cells/ml in 200 mM Tris-HCl, pH 8.0, 4 mM EDTA, 5 mM

2-mercaptoethanol, 10% glycerol, 0.01% Triton X-100, 0.5 mM phenyl-
methylsulfonyl fluoride, 4 �M pepstatin A, and 8 �M leupeptin. The cells
were lysed by vigorously vortexing the cell suspension containing glass
beads for 1 min, 5 times at 0 °C. Samples were clarified by centrifuga-
tion (1,500 � g, 5 min, 4 °C), and supernatants were used to assess fatty
acyl-CoA synthetase activities as described (20). The reaction mixtures
contained 200 mM Tris-HCl, pH 7.5, 2.5 mM ATP, 8 mM MgCl2, 2 mM

EDTA, 20 mM NaF, 0.01% Triton X-100, fatty acid dissolved in 10 mg/ml
�-cyclodextrin (final concentrations of fatty acids were 50 �M), 0.5 mM

coenzyme A, and cell extract in a total volume of 0.5 ml. The reactions
were initiated by the addition of coenzyme A, incubated at 30 °C for 20
min, and terminated by the addition of 2.5 ml of isopropyl alcohol,
n-heptane, 1 M H2SO4 (40:10:1). The radioactive fatty acid was removed
by organic extraction using n-heptane. Acyl-CoA formed during the
reaction remained in the aqueous fraction and was quantified by scin-
tillation counting. Protein concentrations in the cell extracts were de-
termined using the Bradford assay and bovine serum albumin as a
standard (21). The values presented represent the average from at least
three independent experiments performed in duplicate. All experiments
were subjected to analysis of variance (StatView, SAS Institute, Inc.).

Negative Dominance of Mutant Fat1p Over Fatty Acyl-CoA Synthe-
tase—The sequence encoding the C-terminal 125 amino acids (residues
545–669) of Fat1p was cloned in-frame to the T7 epitope tag of the yeast
expression vector YEpGALSET983 to generate YEpDB213. The result-
ing T7Fat1p125C fusion was expressed under the control of the GAL10
promoter. To test for negative dominance, YEpDB213 was transformed
into YB332. Cells transformed with the vector (YEpGALSET983)
served as a control. The cells were pre-grown in YNBD (without leucine)
overnight. The culture was harvested by centrifugation and resus-
pended to a cell density of 0.1 A600 in 50 ml of YNB containing 2%
galactose and 2% raffinose to induce expression of T7Fat1p125C. When
the density reached 1.0 A600, cells were harvested by centrifugation,
washed once in PBS, and resuspended in 1 ml of breaking buffer (200
mM Tris, pH 8.0, 4 mM EDTA, 10% glycerol, 5 mM �-mercaptoethanol,
0.01% Triton X-100, 0.5 mM phenylmethylsulfonyl fluoride, 4 �M pep-
statin A, and 8 �M leupeptin). The cells were lysed by vortexing with
glass beads and assayed for long-chain acyl-CoA synthetase activity as
detailed above.

Two-hybrid Analysis of Fat1p and Faa1p—The yeast two-hybrid
system was used to test Faa1p-Fat1p interaction (22). The bait plasmid
vector used was pEG202; the trap plasmid vector was pJG4-5, and the
reporter plasmid was pSH18-34T. To generate the full-length Faa1p-
bait fusion protein, the coding sequence of FAA1 was amplified using
the upstream primer 5�-AGACCCATGGATGGTTGCTCAATATACC-
G-3� and the downstream primer 5�-AAATGTTGGCGGCCGCAGACG-
AACTATAAACGGC-3�. The amplified DNA fragment was cleaved with
NcoI and NotI and ligated into pEG202 cleaved with the same enzymes.
For the trap plasmids, a single primer was used to amplify DNA at the
3� end of the gene including the termination codon encoding amino acid
669, 5�-GAACATCCTCGAGTAATTTAATTGTTTGTGC-3�, whereas
unique primers were used to amplify DNA at the 5� ends. These inclu-
ded 5�-TTTTTAGCGCGCAATACTAAAGGCACTCCG-3� to generate a
peptide from amino acids 169 to 669 of Fat1p (Fat1p500C) and 5�-GAA-
GATGAATTCACGGCCAGTAACAAAGAAC-3� to generate a peptide
from amino acids 544 to 669 of Fat1p (Fat1p125C). The amplified DNA
fragments were digested with the appropriate restriction enzymes and
ligated into pJG4-5.

To test interaction, the Faa1p bait plasmid and the target trap
plasmid of interest were transformed into yeast strain W303B carrying
the reporter plasmid pSH18-34T. The reporter plasmid pSH18-34T
contains the lacZ gene encoding �–galactosidase driven by a promoter
controlled by eight LexA operators. To maintain each plasmid, trans-
formants were selected and maintained on YNBD media lacking uracil
(for pSH18-34T), histidine (for the pEG202-derived bait), and trypto-
phan (for the pJG4-5-derived traps). Expression of �-galactosidase ac-
tivity was measured using the liquid assay employing o-nitrophenyl
�-D-galactopyranoside as substrate as described previously (23). For
these experiments, cells were grown overnight in YNBD (without ura-
cil, histidine, or tryptophan) and subcultured to A600 0.02–0.1 in 10 ml
of YNB containing 2% galactose and 2% raffinose. Growth was contin-
ued until the A600 reached 0.5–1.0, at which time was stopped by
placing the cultures on ice. Aliquots of cells (1 ml) were harvested by
centrifugation (14,000 rpm for 3 min). The cell pellets were resuspended
in 200 �l of 0.1 M Tris, pH 7.5, containing 0.05% Triton X-100. The
sample was frozen on dry ice and stored at �80 °C prior to assay. All
experiments defining �-galactosidase activities were performed in du-
plicate at least five times as described previously (23); the data were
analyzed using paired t-tests against cells containing the bait (Faa1p),
the trap vector (pJG4-5), and the reporter (StatView, SAS Institute,
Inc.).

Co-immunoprecipitation of Fat1p and Faa1p or Faa4p—To identify a
protein complex containing Fat1p and Faa1p or Faa4p, plasmids were
constructed expressing each protein fused to a peptide tag, which is
recognized by a commercially available antibody. Full-length Fat1p
tagged with a T7 epitope was constructed in the vector YEpGALSET983
to generate plasmid YEpDB204. The coding sequence of FAT1 was
amplified using the upstream primer 5�-GCGGAGCTCATGTCTC-
CCATACAGGTTGTTG-3� and the downstream primer 5�-CGCGGTAC-
CATGCTCTAATGGAAAGGTAC-3�. The amplified DNA fragment was
cleaved with SacI and KpnI and ligated into YEpGALSET983 cleaved
with the same restriction enzymes. Expression clones encoding full-
length Faa1p or Faa4p tagged at the C terminus with a V5 epitope were
obtained from Invitrogen (GeneStormTM clones pYES2/YOR317w and
pYES2/YMR246w, respectively).

The plasmid pair encoding the proteins of interest (e.g. T7Fat1p and
V5Faa1p or V5Faa4p) was transformed into the fat1� faa1� strain to test
Fat1p-Faa1p interaction or the fat1� faa4� strain to test Fat1p-Faa4p
interaction. The cells were pre-grown in YNBD without leucine and
uracil to maintain both plasmids; cells were subsequently subcultured
to 0.1 A600 in 75 ml of YNB containing 2% galactose and 2% raffinose
(without leucine and uracil) to induce expression of the epitope-tagged
target proteins. When the cell density reached 1.0 A600, the cells were
harvested, washed once with PBS, and resuspended in 1.5 ml of lysis
buffer containing 50 mM Tris, pH 7.5, and 150 mM NaCl. The cells were
lysed by vortexing with glass beads on ice as detailed above. The glass
beads were pelleted by centrifugation (2,000 rpm, 2 min, 4 °C). The
supernatant was removed to a new tube, and Triton X-100 was added to
a final concentration of 1%, and the mixture was incubated on ice for 45
min. The sample was clarified by centrifugation (4,000 rpm, 15 min,
4 °C). The resultant supernatant was split into three 0.5-ml aliquots
(�0.7 mg/ml); 2 �g of anti-T7 or 2 �g of anti-V5 antibodies was added to
the first two, and an equal volume of lysis buffer was added to the third
as a control (protein A-Sepharose bead control). The samples were
incubated with gentle rotation overnight at 4 °C. Protein A-Sepharose
beads (50 �l of 50% slurry) were added to each sample, which were then
incubated for 2 h with gentle rotation at 4 °C. The protein A-Sepharose
beads (containing the antigen-antibody complex) were pelleted by cen-
trifugation (1,000 rpm, 1 min, 4 °C) and subsequently washed 5 times in
50 mM Tris, pH 7.5, 150 mM NaCl, 1% Triton X-100. The final pellets
containing the protein A-Sepharose beads/antigen-antibody complex
were resuspended in 70 �l of SDS sample buffer. Samples were boiled
5 min, and the proteins from 5 �l of the cell lysate or 15 �l of the
immunoprecipitated sample were separated by electrophoresis on a
12.5% SDS-polyacrylamide gel. After electrophoresis the proteins were
transferred to nitrocellulose for immunoblotting. Tagged proteins were
detected using the appropriate antibody (anti-V5, anti-T7, or anti-
Pma1p) as detailed in the figure legends.

RESULTS

Identification of Multicopy Suppressors of Synthetic Lethality
Imposed by Cerulenin on faa1� faa4� or faa1� fat1� Strains—
When yeast cells are grown on media containing the fatty-acid
synthase inhibitor cerulenin, they become auxotrophic for long-
chain (C14–C18) fatty acids. Supplementation of the media with

Vectorial Acylation via Fatty Acid Import-Activation Complex16416

  

http://www.jbc.org/


100 �M oleate is sufficient to restore growth to wild-type
strains. However, cells carrying deletions in FAT1 or FAA1 and
FAA4 are not viable on media containing cerulenin despite the
addition of fatty acids. For fat1� strains, we have shown pre-
viously (13) this phenotype is due to a defect in the ability to
import fatty acids and not due to depressed levels of long-chain
fatty acyl-CoA synthetase activities. Strains carrying deletions
in the genes encoding the fatty acyl-CoA synthetases Faa1p
and Faa4p have a similar phenotype, which we hypothesize is
due to a specific coupling between Fat1p-mediated fatty acid
transport and Faa1p/Faa4p-mediated fatty acid activation (11).
The esterification of the exogenous fatty acid to coenzyme A is
required for all subsequent metabolic processes.

In an attempt to identify genes that could functionally re-
place FAT1 or FAA1 and FAA4, we screened a yeast genomic
multicopy library for clones, which suppressed the cerulenin-
induced lethality of an faa1� faa4� strain (deficient in long-
chain fatty acyl-CoA synthetase activity) and an faa1� fat1�
strain (deficient in fatty acid import and with reduced long-
chain fatty acyl-CoA synthetase activity). Primary transfor-
mants were selected on YNBD plates lacking uracil and sub-
sequently were replica-plated to YNBD plates containing
cerulenin and oleate. Plasmids were isolated from colonies that
grew on the selective media, and the individual plasmid en-
coded suppressors verified by retransformation. The identities
of the inserts were determined by restriction enzyme analysis
and by sequencing using plasmid-specific primers flanking the
site of insertion. In both screens, multiple isolates of each
plasmid-borne suppressor were identified indicating all possi-
ble suppressing clones available in this genomic library had
been identified (Table II). As expected, because both strains
carried a deletion in FAA1, most of the plasmids identified in
either strain encoded the fatty acyl-CoA synthetase Faa1p. A
surprising result was that FAT1 was identified at high fre-
quency, whereas FAA4 was identified in only two cases in the
screen using the faa1� faa4� strain. FAA4 was not identified
as a multicopy suppressor in the faa1� fat1� strain. Subse-
quent analyses of the faa1� fat1� strain transformed with a
YEp24 plasmid derivative encoding Faa4p (YEpDB133) veri-
fied this fatty acyl-CoA synthetase could not substitute for
FAA1 and FAT1 in this strain. Three plasmids identified as
multicopy suppressors using these screens were chosen for
further characterization. They were YEpDB02 encoding Faa1p,
YEpDB133 encoding Faa4p, and YEpDB17 encoding Fat1p
(Table II; Fig. 1).

We noted that several plasmids isolated from the colonies
listed in the “other” category in Table II did not confer the
suppressor phenotype upon re-transformation. Therefore, we
presume the phenotype was associated with an undefined chro-
mosomally encoded suppressor.

The Multicopy Suppressors Alleviate Fatty Acid Import De-
fects—In an effort to determine whether fatty acid import was

restored by the plasmid-encoded suppressors, we monitored the
accumulation of the fluorescent fatty acid analogue C1-
BODIPY-C12 using confocal laser scanning microscopy in wild-
type strains and transformants of the faa1� faa4� and faa1�
fat1� strains. Wild-type cells import C1-BODIPY-C12 quickly
(within 30 s) by a process that is essentially irreversible, which
we suspect reflects metabolic activation (14). Previous work
from our laboratory (13, 14) has shown a deletion within FAT1
severely restricts C1-BODIPY-C12 accumulation. Deletion of
FAA1 alone appears to decrease, but not completely eliminate,
accumulation of C1-BODIPY-C12. Deletion of FAA4 has essen-
tially no effect. In contrast, when both FAA1 and FAA4 are
deleted, the accumulation of C1-BODIPY-C12 is restricted in a
manner similar to that observed in FAT1 mutants (11). As
illustrated in Fig. 2, the accumulation of C1-BODIPY-C12 was
restored in the faa1� faa4� strain harboring FAT1, FAA1, or
FAA4 on a multicopy plasmid. These results point out that
FAT1 is a true multicopy suppressor. Only when expressed
from a 2� plasmid can FAT1 compensate for deletions in FAA1
and FAA4. These data support the notion that Fat1p and
Faa1p or Faa4p form a functional network facilitating the
import and activation of exogenous fatty acids, and in wild-type
cells each functions in a distinct yet coordinate manner. It is
important to note that FAA4 on a multicopy plasmid
(YEpDB133) did not restore in C1-BODIPY-C12 accumulation
in the faa1� fat1� strain, whereas both FAA1 and FAT1 did
(Fig. 2). These results indicated that Faa1p, Faa4p, and Fat1p
have overlapping, yet distinct roles. Of particular importance
was the finding that Faa1p and Fat1p appeared to be function-
ally linked. Table III summarizes both the phenotypes and
fatty acid transport profiles of the mutant strains alone and
transformed with the selected multicopy suppressor plasmids.
These findings are consistent with data obtained on the
mmFATP1 and fatty acyl-CoA synthetase, which are proposed
to form a functional complex (15).

Deficiencies in Long-chain Acyl-CoA Synthetase Activity in
faa1� faa4� and faa1� fat1� Strains Can Be Compensated by
Multicopy FAT1—The identification of FAT1 as a multicopy
suppressor in experiments using the faa1� faa4� and faa1�
fat1� strains demonstrated that in high copy FAT1 alone as
well FAA1 alone could compensate for the defects with regard
to importing exogenous long-chain fatty acids. These data im-
ply that under these conditions Fat1p contributed an enzy-
matic activity to promote the unidirectional transport of exog-
enous long-chain fatty acids. Previously, we have shown that
deletion of FAT1 does not reduce long-chain fatty acyl-CoA
synthetase activities measured using whole cell extracts,
whereas deletion of FAA1 and FAA4 reduced these activities
�95% (Table IV) (11, 13). Likewise, when FAT1 is cloned into
a centromeric plasmid (a pRS316 derivative designated
pDB102) (14) and transformed into the faa1� faa4� strain,
long-chain fatty acyl-CoA synthetase activities are not substan-

TABLE II
Characterization of plasmids encoding multicopy suppressors of strains deficient in fatty acid import and long-chain

acyl-CoA synthetase activity

Recipient strain No. clones screeneda No. colonies selectedb ORF identifiedc Percentage of total selected

faa1 � faa4� 30,000 161 FAA1 76
FAT1 17
FAA4 1

Unknown 6
faa1� fat1� 40,000 90 FAA1 56

FAT1 41
FAA4 0

Unknown 3
a Transformants were initially selected as uracil prototrophs upon transformation with the yeast YEp24 chromosomal DNA library (19).
b Uracil prototrophs were replica-plated to YNBD containing 45 �M cerulenin and 100 �M oleate.
c Open reading frames (ORF) were identified by restriction enzyme analysis and DNA sequencing.
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tially elevated, and no complementation was observed on YPD-
CER-OLE plates (data not shown).

Our laboratory and others (14, 24) have shown that Fat1p
has intrinsic very long-chain (C22–C26) fatty acyl-CoA synthe-
tase activity. Indeed, when we first characterized the FAT1
gene, we noted Fat1p shared similarities to the adenylate-
forming family of enzymes, which includes the fatty acyl-CoA
synthetases (13). We reasoned that when expressed from a high
copy number plasmid, FAT1 would result in sufficient long-
chain fatty acyl-CoA synthetase activity to promote growth of
the faa1� faa4� and faa1� fat1� strains under the synthetic

lethal conditions used in this study. To test this idea, we
measured fatty acyl-CoA synthetase activities in total cell ex-
tracts from the parental strain and strains harboring the mul-
ticopy suppressor plasmids using oleate (C18:1) as a substrate
(Table IV). Extracts prepared from the faa1� faa4� strain
harboring YEpDB17 (encoding Fat1p) had �4-fold higher ole-
oyl-CoA synthetase activity compared with the strain carrying
the vector YEp24, which was 30% of the level obtained for the
wild-type strain. This modest increase in oleoyl-CoA synthe-
tase activity correlated with a 3-fold increase in protein level
estimated using Western blot analysis of cellular extracts em-
ploying a Fat1p-specific antibody and analyzed using NIH Im-
age analysis software. The same strain transformed with
YEpDB02 and YEpDB133 (encoding Faa1p and Faa4p, respec-
tively) had 10- and 2-fold oleoyl-CoA synthetase activities, re-
spectively, compared with the same control cells. It is unclear
why increased dosage of FAA4 had such a limited impact on
total oleoyl-CoA synthetase activity. This may be due to protein
instability as noted for the purified enzyme (26) or due to
regulatory parameters poorly defined at the present time. In
the case of the faa1� fat1� strain, we noted similar results.
Most notable among these was the finding that YEpDB17
(FAT1) resulted in oleoyl-CoA synthetase activities, which
were increased 6-fold over the same strain harboring the plas-
mid vector (Table IV).

As noted above, Fat1p has been shown to confer very long-
chain fatty acyl-CoA synthetase activity. Therefore, we also
measured fatty acyl-CoA synthetase activities in the same cell
extracts from above using the very long-chain fatty acid, lignoc-
erate (C24:0) as substrate (Table IV). As expected, expression of
FAT1 from YEpDB17 increased these activities just over 4-fold,
whereas expression of FAA1 from YEpDB02 or FAA4 from
YEpDB133 had no significant effect on total cellular very long-
chain fatty acyl-CoA synthetase activities. Similar results were
obtained for the fat1� faa1� and fat1� host strains (Table IV).

Fat1p and Fatty Acyl-CoA Synthetase Form a Physical Com-
plex—In previous work, we provided independent evidence that
Fat1p (13) and Faa1p or Faa4p (11) are each required for fatty
acid import in yeast. The results of the multicopy suppressor
analyses detailed above extended these results to include a
functional dependence of fatty acid transport on both Fat1p
and fatty acyl-CoA synthetase (Faa1p or Faa4p). Indeed, these
data provided evidence suggesting Fat1p and Faa1p or Fat1p
and Faa4p interact to coordinately facilitate fatty acid trans-
port. The results from the multicopy suppressor screen are
consistent with the notion that, at least in yeast, no other
proteins participate in this process. Yet this experimental ap-
proach did not address whether Fat1p and fatty acyl-CoA syn-
thetase form a physical complex. To address this question, we
employed three different experimental strategies as follows: 1)
negative dominance of mutant Fat1p over fatty acyl-CoA syn-
thetase; 2) yeast two-hybrid analyses to investigate the hypoth-
esized physical linkage between Fat1p and Faa1p or Faa4p;
and 3) co-immunoprecipitation of Fat1p and a cognate fatty
acyl-CoA synthetase.

Often when two proteins physically interact to form a func-
tional complex, inactivation of one protein due to a mutation
will result in a reduction in activity for the partner protein.
This phenomenon is called negative dominance. Long-chain
acyl-CoA synthetase activity in yeast is primarily contributed
by Faa1p (�95%). Therefore, we reasoned that the overexpres-
sion of nonfunctional Fat1p would result in a reduction of
long-chain acyl-CoA synthetase activity if the proteins physi-
cally interact to facilitate vectorial acylation. For these experi-
ments, we expressed a peptide derived from Fat1p made up of the
C-terminal 125 amino acids (residues 545–669; T7Fat1p125C).

FIG. 1. FAA1, FAA4, and FAT1 are multicopy suppressors of the
synthetic lethality of faa1� faa4� and faa1� fat1�. Cells were
streaked YNBD plates containing 100 �M oleate and 45 �M cerulenin,
and the cultures were incubated for 48 h at 30 °C. The host strain was
either YB525 (faa1� faa4�) (A) or LS2086 (faa1� fat1�) (B) carrying the
vector, YEp24, or the plasmids encoding FAA1 (YEpDB02), FAA4
(YEpDB133), or FAT1 (YEpDB17).

FIG. 2. Fatty acid import in the faa1� faa4� strain (A) and
faa1� fat1� (B) containing the indicated multicopy suppressor
plasmids monitored by following the accumulation of the fluo-
rescent long-chain fatty acid C1-BODIPY-C12. Shown are the fol-
lowing: YEp24 (vector control), FAA1 on plasmid YEpDB02, FAA4 on
plasmid YEpDB133, and FAT1 on plasmid YEpDB17.
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This peptide derived from Fat1p was non-functional in transport
and activation, yet when analyzed using SDS-PAGE it formed a
dimer, which was stable to boiling, suggesting it might contain a
protein-protein interaction domain (data not shown). The expres-
sion of T7Fat1p125C significantly reduced oleoyl-CoA synthetase
activity (compared with vector control) (Fig. 3A). The reduction in
activity was correlated with expression of the T7Fat1p125C pep-
tide, detected using a Western blot following expression with
anti-T7 antibodies (Fig. 3B). Under these conditions, the
T7Fat1p125C peptide is expressed at levels nearly 10-fold higher
when compared with native Fat1p (data not shown). These data
are consistent with the proposal that Fat1p and fatty acyl-CoA
synthetase form a functional complex.

Another method, which has become standard to evaluate
protein-protein interactions, is the yeast two-hybrid system.
These experiments employed plasmids encoding a bait protein,
which consisted of a fusion between full-length Faa1p and the
DNA binding domain of bacterial LexA and several trap pro-
teins, which consisted of protein fusions containing full-length
Fat1p and peptides derived from Fatp1 and the Gal-driven
activation domain. In this system a third reporter plasmid

contains the DNA-binding site of LexA in the promoter region
driving expression of lacZ (encoding �-galactosidase), which is
dependent on specific protein-protein interactions between the
bait (bound to the DNA binding site) and the trap (fused to
activation domain, which interacts with yeast RNA polymerase
II). As shown in Table V, positive interactions between full-
length Faa1p and either full-length Fat1p or two peptides
carrying C-terminal fragments of Fat1p (Fat1p500C and
Fat1p125C) were found when compared with the trap vector
control alone. The peptide, which conferred negative domi-
nance to fatty acyl-CoA synthetase activity (T7Fat1p125C) de-
tailed above, also results in a positive interaction with Faa1p
using the yeast two-hybrid system.

Additional evidence for specific protein-protein interactions
between Fat1p and Faa1p or Faa4p was obtained using co-
immunoprecipitation. As detailed under “Experimental Proce-
dures,” Fat1p was tagged with a T7 epitope (T7Fat1p), and the
fatty acyl-CoA synthetases were tagged with a V5 epitope
(V5Faa1p and V5Faa4p). Following growth, extracts were pre-
pared from cells expressing T7Fat1p and V5Faa1p or V5Faa4p
and immunoprecipitated using anti-T7 or anti-V5 antibodies.

TABLE III
Characteristics of yeast strains with mutations in FAT1 and the FAA genes

Growth on YNBD-OLE-CERa Fatty acid transport capacityb

Relevant genotype
Wild type 1 ���
faa1� 3 �
faa4� 1 ���
fat1� 4 �
faa1� faa4� 4 �
faa1� fat1� 4 �
faa4� fat1� 4 �
faa1� faa4� fat1� 4 �

Multicopy suppressors
faa1� faa4�/YEp24 4 �
faa1� faa4�/YEpDB02 (FAA1) 1 ���
faa1� faa4�/YEpDB133 (FAA4) 3 �
faa1� faa4�/YEpDB17 (FAT1) 2 ��
faa1� fat1�/YEpDB02 (FAA1) 2 ��
faa1� fat1�/YEpDB133 (FAA4) 4 �
faa1� fat1�/YEpDB17 (FAT1) 2 ��
fat1�/YEp24 4 �
fat1�/YEpDB17 (FAT1) 1 ���

a Growth was scored by comparison to the wild-type strain. 1, positive growth after 24 h; 2, growth between 24 and 48 h; 3, growth between 48
and 96 h; 4, no growth after 96 h at 30 °C.

b Fatty acid accumulation monitored using C1-BODIPY-C12, visualized using confocal microscopy and scored relative to the wild type: wild-type,
���; ��, slightly reduced from wild type; �, visible accumulation but down dramatically; �, no visible accumulation.

TABLE IV
Fatty acyl-CoA synthetase activities in yeast strains with mutations in FAA1, FAA4, and/or FAT1 alone and transformed with

multicopy suppressor plasmids

Relevant genotype
Fatty acyl-CoA synthetase activity

C18:1 C24:0

pmol/min/mg protein (� S.E.)a

Wild type 3,388.96 (382.17) 41.29 (4.12)
faa1� 258.70 (36.36) 42.67 (5.49)
faa4� 866.58 (110.55) 43.42 (5.99)
fat1� 3,338.67 (358.26) 19.85 (2.37)
faa1� faa4� 190.00 (49.67) 25.11 (1.75)
faa1� fat1� 190.05 (34.80) 10.09 (2.60)
faa4� fat1� 626.03 (53.66) 16.69 (3.45)
faa1� faa4� fat1� 133.86 (42.56) 10.32 (2.97)
faa1� faa4�/YEp24 267.57 (29.05) 36.95 (2.88)
faa1� faa4�/YEpDB02 (FAA1) 2,716.49 (310.61) 41.86 (3.89)
faa1� faa4�/YEpDB133 (FAA4) 480.54 (52.97) 35.99 (4.35)
faa1� faa4�/YEpDB17 (FAT1) 992.23 (102.84) 161.33 (25.59)
faa1� fat1�/YEpDB02 (FAA1) 4,109.75 (571.68) 26.38 (2.88)
faa1� fat1�/YEpDB133 (FAA4) 303.33 (65.44) 20.43 (2.12)
faa1� fat1�/YEpDB17 (FAT1) 1,549.73 (126.99) 29.68 (22.33)
fat1�/YEp24 ND 18.77 (2.29)
fat1�/YEpDB17 (FAT1) ND 175.50 (32.58)

a Data from at least three independent experiments performed in duplicate. ND, not determined.
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The presence of the second protein in the complex was detected
by Western blot analyses using the reciprocal antibody. The
data presented in Fig. 4 showed that V5Faa1p and V5Faa4p are
co-immunoprecipitated with T7Fat1p whether the precipitating
antibody was anti-T7 directed against Fat1p or anti-V5 di-
rected against one of the Faa proteins. In our control experi-
ments using protein A-Sepharose beads alone (Fig. 4) or using
an unrelated antibody (c-Myc) (not shown), we did not pull
down the Fat1p-fatty acyl-CoA synthetase complex. Addition-
ally, to test for nonspecific protein-protein interactions, we
probed the immunocomplex using an antibody against Pma1p,
an unrelated plasma membrane protein (25). No co-immuno-
precipitation of Pma1p with Fat1p, Faa1p, or Faa4p was de-
tected (Fig. 4). These data are in agreement with the results of
the multicopy suppressor analysis, negative dominance, and
yeast two-hybrid data presented above and fully support the
notion that Fat1p and Faa1p or Faa4p form a physical complex,
which we suggest is crucial to the process of vectorial esterifi-
cation of exogenous long-chain fatty acids.

DISCUSSION

When long-chain fatty acids are supplied in the growth me-
dia, S. cerevisiae transports these compounds into the cell by a
process, which requires Fat1p and the fatty acyl-CoA synthe-
tase Faa1p. Even though Faa1p and Faa4p have been sug-
gested to be functionally redundant, previous results and those
presented here show that Faa1p, rather than Faa4p, plays a
more distinct role in fatty acid import (11, 26). Importantly, the
experiments reported here provide substantial genetic and bio-
chemical evidence that Fat1p and fatty acyl-CoA synthetase
(Faa1p or Faa4p) form a physical complex required to facilitate
fatty acid import. These data are consistent with the hypothe-
sis that the fundamental mechanism driving the accumulation
of exogenous fatty acids within the cell is vectorial acylation
whereby exogenous fatty acids are metabolically trapped as
acyl-CoA thioesters.

Until this time, the physical and functional association of
FATP and fatty acyl-CoA synthetase has been inferential (3,
11, 15). The present studies indicate that in the natural envi-
ronment when fatty acids are limiting as, for example, occurs
during hypoxia, Fat1p and Faa1p are each required for fatty
acid import. Whereas each protein fulfills a separate function,
the activities are coordinated and facilitated by a physical

interaction. The former conclusion is based on the observation
that in single copy neither gene can substitute for the other.
The distinct functions for Fat1p and Faa1p were apparent in
enzymatic analyses of acyl-CoA synthetase specificity and ac-
tivity and in our fatty acid transport studies. In multicopy,
Faa1p can substitute for Fat1p, and in turn, Fat1p can substi-
tute for Faa1p in potentiating fatty acid import. Thus the
apparent increase in accumulation of C1-BODIPY-C12 when
either of these genes is overexpressed appears related to the

FIG. 4. Co-immunoprecipitation of Fat1p and Faa1p or Faa4p.
A, anti-T7 antibody (�-T7) was used to pull down full-length T7Fat1p in
extracts prepared from cells co-expressing T7Fat1p and V5Faa1p or
V5Faa4p as indicated. The proteins were separated by SDS-PAGE, and
subsequent Western blots were probed with anti-V5 (�-V5) antibody to
detect V5Faa1p or V5Faa4p as shown. B, similarly, anti-V5 was used as
the precipitating antibody to pull down V5Faa1p or V5Faa4p following
co-expression of T7Fat1p and V5Faa1p or V5Faa4p, and the resultant blot
was probed with anti-T7. IB, antibody used in the immunoblot; T, total
cell extract; IP, samples immunoprecipitated with the indicated anti-
body; Beads, protein A-Sepharose alone without an immunoprecipitat-
ing antibody. Anti-Pma1p was used as a control protein specific to a
yeast plasma membrane protein but unrelated to Fat1p, Faa1p,
or Faa4p.

FIG. 3. Negative dominance of mu-
tant Fat1p over fatty acyl-CoA syn-
thetase. Extracts were prepared from
wild-type cells carrying a plasmid encod-
ing T7Fat1p125C under the control of a ga-
lactose-inducible promoter and used to
assess oleoyl-CoA synthetase activity (A)
and peptide expression (B) using a West-
ern blot probed with anti-T7 antibody.

TABLE V
Yeast two-hybrid analyses of Faa1p-Fat1p interaction

Baita Trapa �-Galactosidase activity pc

Miller units (� S.E.)b

Faa1p Trap vector alone 8.81 (0.85)
Faa1p Fat1p 13.34 (0.91) 0.0021
Faa1p Fat1500C 16.08 (1.64) 0.0015
Faa1p Fat1125C 13.55 (0.82) 0.0029

a Bait, full-length Faa1p fused to the DNA binding domain of LexA. Trap, either full-length Fat1p or C-terminal peptides containing the number
of amino acids as listed fused to the B42AD activation domain.

b Data from at least five independent experiments performed in duplicate.
c Significance defined using a paired t test (comparing strains expressing the Faa1p-Fat1p partners and the control expressing only the Faa1p

bait plasmid and the trap vector plasmid).
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essential role of long-chain fatty acyl-CoA synthetase activity
in import and utilization rather than to a transport function
per se. Thus utilization creates a diffusional gradient depend-
ent upon the acyl-CoA synthetase Faa1p (and to a more limited
extent Faa4p) but not Fat1p. The role of Fat1p in fatty acid
import appears to be distinct from Faa1p and essential only at
limiting fatty acid concentrations (�500 �M) such as might
occur when cells are growing under hypoxic conditions in the
natural environment. We suggest this mechanism of fatty acid
transport by vectorial acylation exemplifies a system common
to eukaryotes including mammalian cells that functions
through FATP and a cognate fatty acyl-CoA synthetase.

There is substantial data showing Fat1p plays a role in
long-chain fatty acid import yet has intrinsic very long-chain
(C22–C26) fatty acyl-CoA synthetase activity (14, 24). This pre-
sents somewhat of a dilemma. Our results are consistent with
the notion that the specificity of the fatty acid import system in
yeast is for long-chain fatty acids as opposed to very long-chain
fatty acids. Addition of very long-chain fatty acids to the growth
media of yeast strains defective in very long-chain fatty acid
synthesis does not alleviate the growth defect, suggesting the
very long-chain fatty acids cannot be trafficked from an exog-
enous source to the site of metabolic utilization (27). Yet Fat1p
is a central component of the long-chain fatty acid import
system in yeast, being required both under anaerobic condi-
tions and under cerulenin-induced conditional lethality, where
exogenous long-chain fatty acids are required for growth (14).
We have provided evidence recently (28) that the very long-
chain fatty acyl-CoA synthetase activity intrinsic to Fat1p can
be distinguished from fatty acid import in specific mutant
alleles of FAT1 with single amino acid substitutions. Addition-
ally, the specificity of Fat1p-dependent import is for long-chain
fatty acid substrates, whereasFat1p-dependent fatty acyl-CoA
synthetase activity is for very long-chain substrates (14, 24).
The deletion of FAA1 encoding the major long-chain fatty acyl-
CoA synthetase decreases fatty acid import nearly 3-fold;
therefore, we suggest this enzyme is primarily responsible for
activating fatty acids from an exogenous source and therefore
contributes to the specificity of the import system (11).

The ability of FAT1 encoded within a high copy number
episome to suppress the phenotype on YNBD containing oleate
and cerulenin of a faa1� faa4� strain and the corresponding
ability of plasmid-encoded Faa1p to suppress the same pheno-
type of the faa1� fat1� strain is consistent with a functional
interrelationship between Fat1p and Faa1p in long-chain fatty
acid import. However, multicopy suppression might also result
from alterations in intracellular metabolism and regulation
distinct from the coupled transport/activation process when
fatty acid import or fatty acyl-CoA synthetase activity is highly
elevated by comparison to activities contributed by a single
copy of the native gene. As detailed in these studies, we did not
observe oleoyl-CoA synthetase activities comparable with or
exceeding wild-type levels for either strain expressing FAT1 or
FAA4 in high copy. In the case of the faa1� faa4� strain (wild
type for FAT1) transformed with YEpDB17 (FAT1), there was
sufficient oleoyl-CoA synthetase activity (albeit only �30%
wild-type), which appeared to drive the coupled import/activa-
tion process. On the other hand in the faa1� fat1� strain
transformed with YEpDB133 (FAA4), there was detectable ole-
oyl-CoA synthetase activity (�10% wild type), but this was not
sufficient to overcome the block as a consequence of a deletion
in FAT1. By comparison, the faa1� fat1� strain transformed
with YEpDB02 (FAA1) had robust oleoyl-CoA synthetase ac-
tivity (�121% wild type), which was sufficient to overcome the
block due to the fat1� deletion. Therefore, we believe the sup-

pression is caused by overexpression of one of the partners in
the import process, Fat1p or Faa1p.

Although we did not identify new partners in the fatty acid
trafficking pathway by selecting multicopy suppressors, these
results are of particular significance because they confirmed by
using a powerful genetic approach the importance of an inter-
action between Fat1p and Faa1p in fatty acid import. Indeed,
with one note of caution based on the suppressors presumed to
be chromosomally encoded, these studies indicate these two
proteins may be the only components mediating this process in
yeast. Our present results parallel the previous work of Schaf-
fer and Lodish (3) that identified independent clones encoding
murine FATP1 and a fatty acyl-CoA synthetase using a func-
tional cloning strategy. Functional cloning requires, in essence,
overexpression of the protein target in a manner analogous to
our studies using multicopy suppression. The murine FATP1
and fatty acyl-CoA synthetase each were identified and shown
to function to promote the accumulation of C1-BODIPY-C12 (3).
By analogy, we have shown that Fat1p and Faa1p, when ex-
pressed from a 2-�m plasmid also function to promote the
accumulation of C1-BODIPY-C12. The murine FATP1 also has
intrinsic very long-chain acyl-CoA synthetase activity (29).
Likewise, we and others (14, 24) have shown yeast Fat1p is a
very long-chain acyl-CoA synthetase. Previously, we have
shown (14) murine FATP1 complements the biochemical phe-
notypes associated with the fat1� strain in yeast indicating
that the yeast and the mouse proteins are functionally equiv-
alent. Collectively, these data support the notion that the fatty
acid import mechanism working through Fat1p (or FATP) and
fatty acyl-CoA synthetase is primarily through the esterifica-
tion of the fatty acid with CoA, which results in metabolic
trapping. Our working hypothesis is that Fat1p functions to
increase fatty acid binding to the membrane, which in turn
potentiates diffusion across the membrane. The fatty acid is
subsequently metabolically activated concomitant with ab-
straction from the membrane by the Faa1p-Fat1p complex
thereby generating a concentration gradient, which further
drives the import process.

The present work demonstrates for the first time a physical
interaction between Fat1p and Faa1p or Faa4p. In each series
of experiments (i.e. negative dominance, two-hybrid analyses,
and co-immunoprecipitation), the full-length proteins and C-
terminal peptides of Fat1p resulted in positive interactions.
One outcome from these experiments suggests the protein-
protein interaction domain of Fat1p is localized at least in part
to the C-terminal 125 residues. At present, we have no data
localizing an interaction domain within Faa1p or Faa4p. Those
experiments are currently underway.

Fatty acid transport in S. cerevisiae is tightly coupled to
utilization and is primarily dependent upon the products of two
genes, Fat1p and Faa1p. These proteins function in concert to
couple fatty acid import to fatty acid activation and metabolic
utilization, a process first described in bacteria as vectorial
acylation. Due to the functional conservation of these proteins
in higher eukaryotes, yeast provides a valuable, genetically
tractable model system useful to further elucidate the mecha-
nisms that underpin fatty acid import in eukaryotic systems.
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