76 research outputs found

    A PC-BASED SYSTEM FOR MAINTENANCE MANAGEMENT OF BUILDINGS: GENERAL DESCRIPTION

    Get PDF
    ABSTRACT Europe's rich culture in wooden buildings are rapidly degrading due to environmental impact, wrong conservation techniques and lack of resources and technological tools for appropriate conservation. These issues were addressed in the former EU-project ENV4-CT95-0110 Wood-Assess , which has been finalised . In a new EU-project MMWood (ENV4-CT-98-0796) a PC-based system for maintenance management of buildings has been developed. The project had the following objectives: To develop and validate for the SMEs an integrated Maintenance Management system for historic buildings, adapted to the needs and purposes of various user group levels. Based on the Wood-Assess concept and results the modular GIS (Geographical Information System) based system, MMWood, will specifically contain • A documentation system for outer and inner parts of buildings and components, • Soft-and hardware tools for the building inspection in the course of maintenance tasks, • An environmental risk factor assessment module, • A standardized maintenance assessment module, • A cost and maintenance planning module. Main developments from the Wood-Assess project are the inclusion of the maintenance management phase, extension of the damage atlas to include also adjoining materials in wood constructions, rendering, brick and natural stone, and a fully integrated field inspection system, allowing the user to import/export all background and recorded data between the field inspection and the total maintenance management system. In this paper some of the main results of the project are given with much of the emphasis on presenting the PC-based application, and its use in some practical examples. Detailed results from the environmental risk factor assessment module and the standardised maintenance assessment module will be given in separate papers to this Congress

    In-situ characterization of metal nanoparticles and their organic coatings using laser-vaporization aerosol mass spectrometry

    Get PDF
    The development of methods to produce nanoparticles with unique properties via the aerosol route is progressing rapidly. Typical characterization techniques extract particles from the synthesis process for subsequent offline analysis, which may alter the particle characteristics. In this work, we use laser-vaporization aerosol mass spectrometry (LV-AMS) with 70-eV electron ionization for real-time, in-situ nanoparticle characterization. The particle characteristics are examined for various aerosol synthesis methods, degrees of sintering, and for controlled condensation of organic material to simulate surface coating/functionalization. The LV-AMS is used to characterize several types of metal nanoparticles (Ag, Au, Pd, PdAg, Fe, Ni, and Cu). The degree of oxidation of the Fe and Ni nanoparticles is found to increase with increased sintering temperature, while the surface organic-impurity content of the metal particles decreases with increased sintering temperature. For aggregate metal particles, the organic-impurity content is found to be similar to that of a monolayer. By comparing different equivalent-diameter measurements, we demonstrate that the LV-AMS can be used in tandem with a differential mobility analyzer to determine the compactness of synthesized metal particles, both during sintering and during material addition for surface functionalization. Further, materials supplied to the particle production line downstream of the particle generators are found to reach the generators as contaminants. The capacity for such in-situ observations is important, as it facilitates rapid response to undesired behavior within the particle production process. This study demonstrates the utility of real-time, in-situ aerosol mass spectrometric measurements to characterize metal nanoparticles obtained directly from the synthesis process line, including their chemical composition, shape, and contamination, providing the potential for effective optimization of process operating parameters

    Neuroinflammatory markers associate with cognitive decline after major surgery:Findings of an explorative study

    Get PDF
    OBJECTIVE Long‐term cognitive decline is an adverse outcome after major surgery associated with increased risk for mortality and morbidity. We studied the cerebrospinal fluid (CSF) and serum biochemical inflammatory response to a standardized orthopedic surgical procedure and the possible association with long‐term changes in cognitive function. We hypothesized that the CSF inflammatory response pattern after surgery would differ in patients having long‐term cognitive decline defined as a composite cognitive z score of ≥1.0 compared to patients without long‐term cognitive decline at 3 months postsurgery. METHODS Serum and CSF biomarkers of inflammation and blood–brain barrier (BBB) integrity were measured preoperatively and up to 48 hours postoperatively, and cognitive function was assessed preoperatively and at 2 to 5 days and 3 months postoperatively. RESULTS Surgery was associated with a pronounced increase in inflammatory biomarkers in both CSF and blood throughout the 48‐hour study period. A principal component (PC) analysis was performed on 52 inflammatory biomarkers. The 2 first PC (PC1 and PC2) construct outcome variables on CSF biomarkers were significantly associated with long‐term cognitive decline at 3 months, but none of the PC construct serum variables showed a significant association with long‐term cognitive decline at 3 months. Patients both with and patients without long‐term cognitive decline showed early transient increases of the astroglial biomarkers S‐100B and glial fibrillary acidic protein in CSF, and in BBB permeability (CSF/serum albumin ratio). INTERPRETATION Surgery rapidly triggers a temporal neuroinflammatory response closely associated with long‐term cognitive outcome postsurgery. The findings of this explorative study require validation in a larger surgical patient cohort. ANN NEUROL 202

    Genome-wide meta-analysis of 241,258 adults accounting for smoking behaviour identifies novel loci for obesity traits

    Get PDF
    Few genome-wide association studies (GWAS) account for environmental exposures, like smoking, potentially impacting the overall trait variance when investigating the genetic contribution to obesity-related traits. Here, we use GWAS data from 51,080 current smokers and 190,178 nonsmokers (87% European descent) to identify loci influencing BMI and central adiposity, measured as waist circumference and waist-to-hip ratio both adjusted for BMI. We identify 23 novel genetic loci, and 9 loci with convincing evidence of gene-smoking interaction (GxSMK) on obesity-related traits. We show consistent direction of effect for all identified loci and significance for 18 novel and for 5 interaction loci in an independent study sample. These loci highlight novel biological functions, including response to oxidative stress, addictive behaviour, and regulatory functions emphasizing the importance of accounting for environment in genetic analyses. Our results suggest that tobacco smoking may alter the genetic susceptibility to overall adiposity and body fat distribution.Peer reviewe

    Genetic fine mapping and genomic annotation defines causal mechanisms at type 2 diabetes susceptibility loci.

    Get PDF
    We performed fine mapping of 39 established type 2 diabetes (T2D) loci in 27,206 cases and 57,574 controls of European ancestry. We identified 49 distinct association signals at these loci, including five mapping in or near KCNQ1. 'Credible sets' of the variants most likely to drive each distinct signal mapped predominantly to noncoding sequence, implying that association with T2D is mediated through gene regulation. Credible set variants were enriched for overlap with FOXA2 chromatin immunoprecipitation binding sites in human islet and liver cells, including at MTNR1B, where fine mapping implicated rs10830963 as driving T2D association. We confirmed that the T2D risk allele for this SNP increases FOXA2-bound enhancer activity in islet- and liver-derived cells. We observed allele-specific differences in NEUROD1 binding in islet-derived cells, consistent with evidence that the T2D risk allele increases islet MTNR1B expression. Our study demonstrates how integration of genetic and genomic information can define molecular mechanisms through which variants underlying association signals exert their effects on disease

    Формирование эмоциональной культуры как компонента инновационной культуры студентов

    Get PDF
    Homozygosity has long been associated with rare, often devastating, Mendelian disorders1 and Darwin was one of the first to recognise that inbreeding reduces evolutionary fitness2. However, the effect of the more distant parental relatedness common in modern human populations is less well understood. Genomic data now allow us to investigate the effects of homozygosity on traits of public health importance by observing contiguous homozygous segments (runs of homozygosity, ROH), which are inferred to be homozygous along their complete length. Given the low levels of genome-wide homozygosity prevalent in most human populations, information is required on very large numbers of people to provide sufficient power3,4. Here we use ROH to study 16 health-related quantitative traits in 354,224 individuals from 102 cohorts and find statistically significant associations between summed runs of homozygosity (SROH) and four complex traits: height, forced expiratory lung volume in 1 second (FEV1), general cognitive ability (g) and educational attainment (nominal p<1 × 10−300, 2.1 × 10−6, 2.5 × 10−10, 1.8 × 10−10). In each case increased homozygosity was associated with decreased trait value, equivalent to the offspring of first cousins being 1.2 cm shorter and having 10 months less education. Similar effect sizes were found across four continental groups and populations with different degrees of genome-wide homozygosity, providing convincing evidence for the first time that homozygosity, rather than confounding, directly contributes to phenotypic variance. Contrary to earlier reports in substantially smaller samples5,6, no evidence was seen of an influence of genome-wide homozygosity on blood pressure and low density lipoprotein (LDL) cholesterol, or ten other cardio-metabolic traits. Since directional dominance is predicted for traits under directional evolutionary selection7, this study provides evidence that increased stature and cognitive function have been positively selected in human evolution, whereas many important risk factors for late-onset complex diseases may not have been

    New genetic loci link adipose and insulin biology to body fat distribution.

    Get PDF
    Body fat distribution is a heritable trait and a well-established predictor of adverse metabolic outcomes, independent of overall adiposity. To increase our understanding of the genetic basis of body fat distribution and its molecular links to cardiometabolic traits, here we conduct genome-wide association meta-analyses of traits related to waist and hip circumferences in up to 224,459 individuals. We identify 49 loci (33 new) associated with waist-to-hip ratio adjusted for body mass index (BMI), and an additional 19 loci newly associated with related waist and hip circumference measures (P < 5 × 10(-8)). In total, 20 of the 49 waist-to-hip ratio adjusted for BMI loci show significant sexual dimorphism, 19 of which display a stronger effect in women. The identified loci were enriched for genes expressed in adipose tissue and for putative regulatory elements in adipocytes. Pathway analyses implicated adipogenesis, angiogenesis, transcriptional regulation and insulin resistance as processes affecting fat distribution, providing insight into potential pathophysiological mechanisms
    corecore