1,636 research outputs found
Excitation and detection circuitry for a flux responsive magnetic head
Excitation and detection circuitry for flux responsive magnetic hea
Incremental tape recorder and data rate converter Patent
Development of data storage system for storing digital data in high density format on magnetic tap
Immediate effects of microclimate modification enhance native shrub encroachment
Shrubs have become more dense and expanded beyond their range all over the world for a variety of reasons including increased temperatures, overgrazing, and alteration of historical fire regime. Native shrubs have been encroaching on Virginia barrier island grasslands for over half a century for unknown reasons. Species composition, soil nutrients, leaf area index (LAI), and ground and air temperature were recorded across the shrub to grass transition and at free-standing shrubs in a coastal grassland in order to determine the effect of shrub encroachment on plant community and microclimate. Species richness was significantly lower inside shrub thickets. Soil water content, organic matter, nitrogen (N), carbon (C), and LAI were higher in shrub thickets and free-standing shrubs compared to grasslands. Summer and fall maximum temperatures were lower and more moderate where shrubs were present. Fall and winter minimum temperatures were highest inside shrub thickets. Native shrubs impact microclimate and species composition immediately upon encroachment. These shrubs lower overall species composition, increase soil nutrients and moisture, moderate summer temperature, and increase winter temperature, which has consequences on a larger scale. As barrier islands are critical for protecting marsh and mainland habitats, understanding this mechanism for shrub expansion is important to predict future encroachment of shrubs and displacement of grassland habitat
Mechanisms of Surviving Burial: Dune Grass Interspecific Differences Drive Resource Allocation After Sand Deposition
Sand dunes are important geomorphic formations of coastal ecosystems that are critical in protecting human populations that live in coastal areas. Dune formation is driven by ecomorphodynamic interactions between vegetation and sediment deposition. While there has been extensive research on responses of dune grasses to sand burial, there is a knowledge gap in understanding mechanisms of acclimation between similar, coexistent, dune-building grasses such as Ammophila breviligulata (C3), Spartina patens (C4), and Uniola paniculata (C4). Our goal was to determine how physiological mechanisms of acclimation to sand burial vary between species. We hypothesize that (1) in the presence of burial, resource allocation will be predicated on photosynthetic pathway and that we will be able to characterize the C3 species as a root allocator and the C4 species as leaf allocators. We also hypothesize that (2) despite similarities between these species in habitat, growth form, and life history, leaf, root, and whole plant traits will vary between species when burial is not present. Furthermore, when burial is present, the existing variability in physiological strategy will drive species-specific mechanisms of survival. In a greenhouse experiment, we exposed three dune grass species to different burial treatments: 0 cm (control) and a one-time 25-cm burial to mimic sediment deposition during a storm. At the conclusion of our study, we collected a suite of physiological and morphological functional traits. Results showed that Ammophila decreased allocation to aboveground biomass to maintain root biomass, preserving photosynthesis by allocating nitrogen (N) into light-exposed leaves. Conversely, Uniola and Spartina decreased allocation to belowground production to increase elongation and maintain aboveground biomass. Interestingly, we found that species were functionally distinct when burial was absent; however, all species became more similar when treated with burial. In the presence of burial, species utilized functional traits of rapid growth strategy, although mechanisms of change were interspecifically variable
Distinct Biochemical Pools of Golgi Phosphoprotein 3 in the Human Breast Cancer Cell Lines MCF7 and MDA-MB-231
Golgi phosphoprotein 3 (GOLPH3) has been implicated in the development of carcinomas in many human tissues, and is currently considered a bona fide oncoprotein. Importantly, several tumor types show overexpression of GOLPH3, which is associated with tumor progress and poor prognosis. However, the underlying molecular mechanisms that connect GOLPH3 function with tumorigenicity are poorly understood. Experimental evidence shows that depletion of GOLPH3 abolishes transformation and proliferation of tumor cells in GOLPH3-overexpressing cell lines. Conversely, GOLPH3 overexpression drives transformation of primary cell lines and enhances mouse xenograft tumor growth in vivo. This evidence suggests that overexpression of GOLPH3 could result in distinct features of GOLPH3 in tumor cells compared to that of non-tumorigenic cells. GOLPH3 is a peripheral membrane protein mostly localized at the trans-Golgi network, and its association with Golgi membranes depends on binding to phosphatidylinositol-4-phosphate. GOLPH3 is also contained in a large cytosolic pool that rapidly exchanges with Golgi-associated pools. GOLPH3 has also been observed associated with vesicles and tubules arising from the Golgi, as well as other cellular compartments, and hence it has been implicated in several membrane trafficking events. Whether these and other features are typical to all different types of cells is unknown. Moreover, it remains undetermined how GOLPH3 acts as an oncoprotein at the Golgi. Therefore, to better understand the roles of GOLPH3 in cancer cells, we sought to compare some of its biochemical and cellular properties in the human breast cancer cell lines MCF7 and MDA-MB-231 with that of the non-tumorigenic breast human cell line MCF 10A. We found unexpected differences that support the notion that in different cancer cells, overexpression of GOLPH3 functions in diverse fashions, which may influence specific tumorigenic phenotypes
Search for Higgs bosons of the Universal Extra Dimensions at the Large Hadron Collider
The Higgs sector of the Universal Extra Dimensions (UED) has a rather
involved setup. With one extra space dimension, the main ingredients to the
construct are the higher Kaluza-Klein (KK) excitations of the Standard Model
Higgs boson and the fifth components of the gauge fields which on
compactification appear as scalar degrees of freedom and can mix with the
former thus leading to physical KK-Higgs states of the scenario. In this work,
we explore in detail the phenomenology of such a Higgs sector of the UED with
the Large Hadron Collider (LHC) in focus. We work out relevant decay branching
fractions involving the KK-Higgs excitations. Possible production modes of the
KK-Higgs bosons are then discussed with an emphasis on their associated
production with the third generation KK-quarks and that under the cascade
decays of strongly interacting UED excitations which turn out to be the only
phenomenologically significant modes. It is pointed out that the collider
searches of such Higgs bosons face generic hardship due to soft end-products
which result from severe degeneracies in the masses of the involved excitations
in the minimal version of the UED (MUED). Generic implications of either
observing some or all of the KK-Higgs bosons at the LHC are discussed.Comment: 25 pages, 9 figures and 1 tabl
Spin and Chirality Effects in Antler-Topology Processes at High Energy Colliders
We perform a model-independent investigation of spin and chirality
correlation effects in the antler-topology processes
at high energy colliders with polarized
beams. Generally the production process
can occur not only through the -channel exchange of vector bosons,
, including the neutral Standard Model (SM) gauge bosons,
and , but also through the - and -channel exchanges of new
neutral states, and , and the -channel
exchange of new doubly-charged states, . The general set of
(non-chiral) three-point couplings of the new particles and leptons allowed in
a renormalizable quantum field theory is considered. The general spin and
chirality analysis is based on the threshold behavior of the excitation curves
for pair production in collisions with
longitudinal and transverse polarized beams, the angular distributions in the
production process and also the production-decay angular correlations. In the
first step, we present the observables in the helicity formalism. Subsequently,
we show how a set of observables can be designed for determining the spins and
chiral structures of the new particles without any model assumptions. Finally,
taking into account a typical set of approximately chiral invariant scenarios,
we demonstrate how the spin and chirality effects can be probed experimentally
at a high energy collider.Comment: 50 pages, 14 figures, 6 tables, matches version published in EPJ
Single hadron response measurement and calorimeter jet energy scale uncertainty with the ATLAS detector at the LHC
The uncertainty on the calorimeter energy response to jets of particles is
derived for the ATLAS experiment at the Large Hadron Collider (LHC). First, the
calorimeter response to single isolated charged hadrons is measured and
compared to the Monte Carlo simulation using proton-proton collisions at
centre-of-mass energies of sqrt(s) = 900 GeV and 7 TeV collected during 2009
and 2010. Then, using the decay of K_s and Lambda particles, the calorimeter
response to specific types of particles (positively and negatively charged
pions, protons, and anti-protons) is measured and compared to the Monte Carlo
predictions. Finally, the jet energy scale uncertainty is determined by
propagating the response uncertainty for single charged and neutral particles
to jets. The response uncertainty is 2-5% for central isolated hadrons and 1-3%
for the final calorimeter jet energy scale.Comment: 24 pages plus author list (36 pages total), 23 figures, 1 table,
submitted to European Physical Journal
Search for squarks and gluinos in events with isolated leptons, jets and missing transverse momentum at s√=8 TeV with the ATLAS detector
The results of a search for supersymmetry in final states containing at least one isolated lepton (electron or muon), jets and large missing transverse momentum with the ATLAS detector at the Large Hadron Collider are reported. The search is based on proton-proton collision data at a centre-of-mass energy s√=8 TeV collected in 2012, corresponding to an integrated luminosity of 20 fb−1. No significant excess above the Standard Model expectation is observed. Limits are set on supersymmetric particle masses for various supersymmetric models. Depending on the model, the search excludes gluino masses up to 1.32 TeV and squark masses up to 840 GeV. Limits are also set on the parameters of a minimal universal extra dimension model, excluding a compactification radius of 1/R c = 950 GeV for a cut-off scale times radius (ΛR c) of approximately 30
Evidence for the Higgs-boson Yukawa coupling to tau leptons with the ATLAS detector
Results of a search for H → τ τ decays are presented, based on the full set of proton-proton collision data recorded by the ATLAS experiment at the LHC during 2011 and 2012. The data correspond to integrated luminosities of 4.5 fb−1 and 20.3 fb−1 at centre-of-mass energies of √s = 7 TeV and √s = 8 TeV respectively. All combinations of leptonic (τ → `νν¯ with ` = e, µ) and hadronic (τ → hadrons ν) tau decays are considered. An excess of events over the expected background from other Standard Model processes is found with an observed (expected) significance of 4.5 (3.4) standard deviations. This excess provides evidence for the direct coupling of the recently discovered Higgs boson to fermions. The measured signal strength, normalised to the Standard Model expectation, of µ = 1.43 +0.43 −0.37 is consistent with the predicted Yukawa coupling strength in the Standard Model
- …