241 research outputs found

    Destabilization of Neutron Stars by Type I Dimension Bubbles

    Full text link
    An inhomogeneous compactification of a higher dimensional spacetime can result in the formation of type I dimension bubbles, i.e., nontopological solitons which tend to absorb and entrap massive particle modes. We consider possible consequences of a neutron star that harbors such a soliton. The astrophysical outcome depends upon the model parameters for the dimension bubble, with a special sensitivity to the bubble's energy scale. For relatively small energy scales, the bubble tends to rapidly consume the star without forming a black hole. For larger energy scales, the bubble grows to a critical mass, then forms a black hole within the star, which subsequently causes the remaining star to collapse. It is possible that the latter scenario is associated with core collapse explosions and gamma ray bursts.Comment: 8 pages; to appear in Phys.Lett.

    Histopathological diagnoses on pleural biopsy specimens over a 15-year period at Chris Hani Baragwanath Academic Hospital, Johannesburg, South Africa: A retrospective review

    Get PDF
    Background. Pleural effusions are a common reason for presentation to healthcare facilities. Blind closed pleural biopsy can be a useful tool to diagnose their cause, especially in resource-limited settings.Objectives. To determine the aetiology, frequency and change in profile of histopathological diagnoses made at Chris Hani Baragwanath Academic Hospital (CHBAH), Johannesburg, South Africa, over the period 1 January 2001 - 31 December 2015.Methods. Pleural biopsies performed at CHBAH and analysed by  histopathologists from the National Health Laboratory Service at the hospital over the study period were retrospectively reviewed by accessing reports from two databases (DISA and TrakCare). The subjects’ ages, genders, HIV status and histopathological diagnoses as well as adenosine deaminase and Ziehl-Neelsen results were recorded.Results. A total of 1 013 samples were included in the study, with 780 considered adequate for assessment. The most common diagnosis was granulomatous inflammation (48.1%, n=375), with the most common type being necrotising granulomatous inflammation (73.6%, n=276). Ten percent of biopsies (n=78) showed malignancy, most commonly  adenocarcinoma, with 46.2% (n=36) metastatic and 23.1% (n=18) primary lung adenocarcinoma. The odds of being diagnosed with malignancy  showed increasing statistical significance above the age of 40 years: 40 - 49 years odds ratio (OR) 8.7, 95% confidence interval (CI) 1.1 - 66.9 (p=0.038); 50 - 59 years OR 12.4, 95% CI 1.6 - 95.0 (p=0.015); ≥60 years OR 23.0, 95% CI 3.1 - 171.3 (p=0.002). HIV seropositivity was associated with lower odds of being diagnosed with malignancy compared with HIV-negative patients (OR 0.5, 95% CI 0.2 - 0.9; p=0.040), with greater odds of a ‘non-cancer’ diagnosis in HIV positive patients (including granulomatous inflammation and pleuritis (OR 2.16, 95% CI 1.03 - 4.51; p=0.040)).Conclusions. Blind closed pleural biopsy has a role to play in the diagnosis of exudative pleural effusions in resource-limited settings, particularly for patients suspected to have tuberculosis (TB) or malignancy. TB remains a common cause of exudative pleural effusions. Patients aged >40 years presenting with an exudative pleural effusion should routinely have pleural biopsy performed. However, this study showed a high  frequency of   inadequate specimens from closed pleural biopsy. Training in the   performance of this procedure to increase diagnostic rates is   recommended

    Tensor Products of Complexes

    Get PDF

    The PanCam Instrument for the ExoMars Rover

    Get PDF
    The scientific objectives of the ExoMars rover are designed to answer several key questions in the search for life on Mars. In particular, the unique subsurface drill will address some of these, such as the possible existence and stability of subsurface organics. PanCam will establish the surface geological and morphological context for the mission, working in collaboration with other context instruments. Here, we describe the PanCam scientific objectives in geology, atmospheric science, and 3-D vision. We discuss the design of PanCam, which includes a stereo pair of Wide Angle Cameras (WACs), each of which has an 11-position filter wheel and a High Resolution Camera (HRC) for high-resolution investigations of rock texture at a distance. The cameras and electronics are housed in an optical bench that provides the mechanical interface to the rover mast and a planetary protection barrier. The electronic interface is via the PanCam Interface Unit (PIU), and power conditioning is via a DC-DC converter. PanCam also includes a calibration target mounted on the rover deck for radiometric calibration, fiducial markers for geometric calibration, and a rover inspection mirror.publishersversionPeer reviewe

    Tetherin antagonism by SARS-CoV-2 ORF3a and spike protein enhances virus release

    Get PDF
    The antiviral restriction factor, tetherin, blocks the release of several different families of enveloped viruses, including the Coronaviridae. Tetherin is an interferon-induced protein that forms parallel homodimers between the host cell and viral particles, linking viruses to the surface of infected cells and inhibiting their release. We demonstrate that SARS-CoV-2 infection causes tetherin downregulation and that tetherin depletion from cells enhances SARS-CoV-2 viral titres. We investigate the potential viral proteins involved in abrogating tetherin function and find that SARS-CoV-2 ORF3a reduces tetherin localisation within biosynthetic organelles where Coronaviruses bud, and increases tetherin localisation to late endocytic organelles via reduced retrograde recycling. We also find that expression of Spike protein causes a reduction in cellular tetherin levels. Our results confirm that tetherin acts as a host restriction factor for SARS-CoV-2 and highlight the multiple distinct mechanisms by which SARS-CoV-2 subverts tetherin function

    Establishing SARS-CoV-2 membrane protein-specific antibodies as a valuable serological target via high-content microscopy

    Get PDF
    The prevalence and strength of serological responses mounted toward SARS-CoV-2 proteins other than nucleocapsid (N) and spike (S), which may be of use as additional serological markers, remains underexplored. Using high-content microscopy to assess antibody responses against full-length StrepTagged SARS-CoV-2 proteins, we found that 85% (166/196) of unvaccinated individuals with RT-PCR confirmed SARS-CoV-2 infections and 74% (31/42) of individuals infected after being vaccinated developed detectable IgG against the structural protein M, which is higher than previous estimates. Compared with N antibodies, M IgG displayed a shallower time-dependent decay and greater specificity. Sensitivity for SARS-CoV-2 seroprevalence was enhanced when N and M IgG detection was combined. These findings indicate that screening for M seroconversion may be a good approach for detecting additional vaccine breakthrough infections and highlight the potential to use HCM as a rapidly deployable method to identify the most immunogenic targets of newly emergent pathogens

    Collisional and Radiative Processes in Optically Thin Plasmas

    Get PDF
    Most of our knowledge of the physical processes in distant plasmas is obtained through measurement of the radiation they produce. Here we provide an overview of the main collisional and radiative processes and examples of diagnostics relevant to the microphysical processes in the plasma. Many analyses assume a time-steady plasma with ion populations in equilibrium with the local temperature and Maxwellian distributions of particle velocities, but these assumptions are easily violated in many cases. We consider these departures from equilibrium and possible diagnostics in detail

    Saethre-Chotzen syndrome : cranofacial anomalies caused by genetic changes in the TWIST gene

    Get PDF
    In this thesis, one of the most frequently occurring and most variable craniosynostosis syndromes was investigated; Saethre-Chotzen syndrome. Craniosynostosis is the premature obliteration of cranial sutures in the developing embryo. It can also occur in the first few months of life. Saethre-Chotzen syndrome is, besides craniosynostosis, characterized by specific facial and limb abnormalities, of which the most frequently reported are ptosis, prominent crus helicis, cutaneous syndactyly of digit 2 and 3 on both hands and feet, and broad halluces. Saethre-Chotzen syndrome has been linked to the TWIST gene on chromosome 7p21.1. Mutations in and variably sized deletions of this gene can be found in patients with clinical features of Saethre-Chotzen syndrome. The latter, TWIST deletions, often also include part of the surrounding chromosome 7p and are reported to be associated with mental retardation. In Saethre-Chotzen patients, in whom neither a mutation nor a deletion of TWIST had been found, the FGFR3 P250R mutation was in some cases detected. This mutation has specifically been linked to Muenke syndrome that is characterized by unior bicoronal synostosis and slight facial dysmorphology. However, a Saethre-Chotzen like phenotype can also result from this mutation. Because of the possible overlap of Saethre-Chotzen with Muenke syndrome, these syndromes were studied in order to provide clinical criteria that discriminate between the two (chapter 4). Many phenotypic features occur in both syndromes. In addition, although unicoronal synostosis occurs slightly more frequently in Muenke syndrome, unicoronal and bicoronal synostosis are seen in both syndromes. The discrimination between Saethre-Chotzen and Muenke is often not made easily and the associated genes, TWIST and FGFR3, respectively, are simultaneously tested for pathogenic m

    Search for strong gravity in multijet final states produced in pp collisions at √s=13 TeV using the ATLAS detector at the LHC

    Get PDF
    A search is conducted for new physics in multijet final states using 3.6 inverse femtobarns of data from proton-proton collisions at √s = 13TeV taken at the CERN Large Hadron Collider with the ATLAS detector. Events are selected containing at least three jets with scalar sum of jet transverse momenta (HT) greater than 1TeV. No excess is seen at large HT and limits are presented on new physics: models which produce final states containing at least three jets and having cross sections larger than 1.6 fb with HT > 5.8 TeV are excluded. Limits are also given in terms of new physics models of strong gravity that hypothesize additional space-time dimensions
    corecore