12 research outputs found

    More on correlators and contact terms in {\cal N}=4 SYM at order g^4

    Full text link
    We compute two-point functions of chiral operators Tr(\Phi^k) for any k, in {\cal N}=4 supersymmetric SU(N) Yang-Mills theory. We find that up to the order g^4 the perturbative corrections to the correlators vanish for all N. The cancellation occurs in a highly non trivial way, due to a complicated interplay between planar and non planar diagrams. In complete generality we show that this same result is valid for any simple gauge group. Contact term contributions signal the presence of ultraviolet divergences. They are arbitrary at the tree level, but the absence of perturbative renormalization in the non singular part of the correlators allows to compute them unambiguously at higher orders. In the spirit of the AdS/CFT correspondence we comment on their relation to infrared singularities in the supergravity sector.Comment: 21 pages, 4 figure

    First Look at z > 1 Bars in the Rest-Frame Near-Infrared with JWST Early CEERS Imaging

    Get PDF
    Stellar bars are key drivers of secular evolution in galaxies and can be effectively studied using rest-frame near-infrared (NIR) images, which trace the underlying stellar mass and are less impacted by dust and star formation than rest-frame UV or optical images. We leverage the power of {\it{JWST}} CEERS NIRCam images to present the first quantitative identification and characterization of stellar bars at z>1z>1 based on rest-frame NIR F444W images of high resolution (~1.3 kpc at z ~ 1-3). We identify stellar bars in these images using quantitative criteria based on ellipse fits. For this pilot study, we present six examples of robustly identified bars at z>1z>1 with spectroscopic redshifts, including the two highest redshift bars at ~2.136 and 2.312 quantitatively identified and characterized to date. The stellar bars at zz ~ 1.1-2.3 presented in our study have projected semi-major axes of ~2.9-4.3 kpc and projected ellipticities of ~0.41-0.53 in the rest-frame NIR. The barred host galaxies have stellar masses ~ 1×1010 1 \times 10^{10} to 2×10112 \times 10^{11} MM_{\odot}, star formation rates of ~ 21-295 MM_{\odot} yr1^{-1}, and several have potential nearby companions. Our finding of bars at zz ~1.1-2.3 demonstrates the early onset of such instabilities and supports simulations where bars form early in massive dynamically cold disks. It also suggests that if these bars at lookback times of 8-10 Gyr survive out to present epochs, bar-driven secular processes may operate over a long time and have a significant impact on some galaxies by z ~ 0.Comment: 16 pages, 5 figures. Accepted for Publication in Astrophysical Journal Letter

    First Look at z > 1 Bars in the Rest-frame Near-infrared with JWST Early CEERS Imaging

    Get PDF
    Stellar bars are key drivers of secular evolution in galaxies and can be effectively studied using rest-frame near-infrared (NIR) images, which trace the underlying stellar mass and are less impacted by dust and star formation than rest-frame UV or optical images. We leverage the power of JWST CEERS NIRCam images to present the first quantitative identification and characterization of stellar bars at z &gt; 1 based on rest-frame NIR F444W images of high resolution (∼1.3 kpc at z ∼ 1-3). We identify stellar bars in these images using quantitative criteria based on ellipse fits. For this pilot study, we present six examples of robustly identified bars at z &gt; 1 with spectroscopic redshifts, including the two highest-redshift bars at z ∼ 2.136 and 2.312 quantitatively identified and characterized to date. The stellar bars at z ∼ 1.1-2.3 presented in our study have projected semimajor axes of ∼2.9-4.3 kpc and projected ellipticities of ∼0.41-0.53 in the rest-frame NIR. The barred host galaxies have stellar masses ∼1 × 10 10 to 2 × 10 11 M ⊙ and star formation rates of ∼21-295 M ⊙ yr −1, and several have potential nearby companions. Our finding of bars at z ∼ 1.1-2.3 demonstrates the early onset of such instabilities and supports simulations where bars form early in massive dynamically cold disks. It also suggests that if these bars at lookback times of 8-11 Gyr survive out to present epochs, bar-driven secular processes may operate over a long time and have a significant impact on some galaxies by z ∼ 0.</p

    Erratum to: 36th International Symposium on Intensive Care and Emergency Medicine

    Get PDF
    [This corrects the article DOI: 10.1186/s13054-016-1208-6.]

    TLR4-mediated activation of dendritic cells by the heat shock protein DnaK from Francisella tularensis

    No full text
    Francisella tularensis is the causative agent of tularemia, a severe, debilitating disease of humans and other mammals. As this microorganism is also classified as a “category-A pathogen” and a potential biowarfare agent, there is a need for an effective vaccine. Several antigens of F. tularensis, including the heat shock protein DnaK, have been proposed for use in a potential subunit vaccine. In this study, we characterized the innate immune response of murine bone marrow-derived dendritic cells (DC) to F. tularensis DnaK. Recombinant DnaK was produced using a bacterial expression system and purified using affinity, ion-exchange, and size-exclusion chromatography. DnaK induced the activation of MAPKs and NF-κB in DC and the production of the proinflammatory cytokines IL-6, TNF-α, and IL-12 p40, as well as low levels of IL-10. DnaK induced phenotypic maturation of DC, as demonstrated by an up-regulation of costimulatory molecules CD40, CD80, and CD86. DnaK stimulated DC through TLR4 and the adapters MyD88 and Toll/IL-1R domain-containing adaptor-inducing IFN-β (TRIF) that mediated differential responses. DnaK induced activation of MAPKs and NF-κB in a MyD88- or TRIF-dependent manner. However, the presence of MyD88- and TRIF-dependent signaling pathways was essential for an optimal, DnaK-induced cytokine response in DC. In contrast, DnaK induced DC maturation in a TRIF-dependent, MyD88-independent manner. These results provide insight about the molecular interactions between an immunodominant antigen of F. tularensis and host immune cells, which is crucial for the rational design and development of a safe and efficacious vaccine against tularemia

    36th International Symposium on Intensive Care and Emergency Medicine : Brussels, Belgium. 15-18 March 2016.

    Get PDF

    Operetta in Italy

    No full text

    Into the chromatin world: Role of nuclear architecture in epigenome regulation

    No full text
    corecore