1,779 research outputs found

    Metric-Torsional Conformal Gravity

    Get PDF
    When in general geometric backgrounds the metric is accompanied by torsion, the metric conformal properties should correspondingly be followed by analogous torsional conformal properties; however a combined metric torsional conformal structure has never been found which provides a curvature that is both containing metric-torsional degree of freedom and conformally invariant: in this paper we construct such a metric-torsional conformal curvature. We proceed by building the most general action, then deriving the most general system of field equations; we check their consistency by showing that both conservation laws and trace condition are verified. Final considerations and comments are outlined.Comment: 6 page

    On Casimir Pistons

    Full text link
    In this paper we study the Casimir force for a piston configuration in R3R^3 with one dimension being slightly curved and the other two infinite. We work for two different cases with this setup. In the first, the piston is "free to move" along a transverse dimension to the curved one and in the other case the piston "moves" along the curved one. We find that the Casimir force has opposite signs in the two cases. We also use a semi-analytic method to study the Casimir energy and force. In addition we discuss some topics for the aforementioned piston configuration in R3R^3 and for possible modifications from extra dimensional manifolds.Comment: 20 pages, To be published in MPL

    The perfect magnetic conductor (PMC) Casimir piston in d+1 dimensions

    Full text link
    Perfect magnetic conductor (PMC) boundary conditions are dual to the more familiar perfect electric conductor (PEC) conditions and can be viewed as the electromagnetic analog of the boundary conditions in the bag model for hadrons in QCD. Recent advances and requirements in communication technologies have attracted great interest in PMC's and Casimir experiments involving structures that approximate PMC's may be carried out in the not too distant future. In this paper, we make a study of the zero-temperature PMC Casimir piston in d+1d+1 dimensions. The PMC Casimir energy is explicitly evaluated by summing over p+1p+1-dimensional Dirichlet energies where p ranges from 2 to dd inclusively. We derive two exact dd-dimensional expressions for the Casimir force on the piston and find that the force is negative (attractive) in all dimensions. Both expressions are applied to the case of 2+1 and 3+1 dimensions. A spin-off from our work is a contribution to the PEC literature: we obtain a useful alternative expression for the PEC Casimir piston in 3+1 dimensions and also evaluate the Casimir force per unit area on an infinite strip, a geometry of experimental interest.Comment: 18 pages, 1 figure, to appear in Phys. Rev.

    Generating Einstein gravity, cosmological constant and Higgs mass from restricted Weyl invariance

    Get PDF
    Recently, it has been pointed out that dimensionless actions in four dimensional curved spacetime possess a symmetry which goes beyond scale invariance but is smaller than full Weyl invariance. This symmetry was dubbed {\it restricted Weyl invariance}. We show that starting with a restricted Weyl invariant action that includes a Higgs sector with no explicit mass, one can generate the Einstein-Hilbert action with cosmological constant and a Higgs mass. The model also contains an extra massless scalar field which couples to the Higgs field (and gravity). If the coupling of this extra scalar field to the Higgs field is negligibly small, this fixes the coefficient of the nonminimal coupling RΦ2R \Phi^2 between the Higgs field and gravity. Besides the Higgs sector, all the other fields of the standard model can be incorporated into the original restricted Weyl invariant action.Comment: 7 pages, no figure

    Three dimensional Casimir piston for massive scalar fields

    Full text link
    We consider Casimir force acting on a three dimensional rectangular piston due to a massive scalar field subject to periodic, Dirichlet and Neumann boundary conditions. Exponential cut-off method is used to derive the Casimir energy in the interior region and the exterior region separated by the piston. It is shown that the divergent term of the Casimir force acting on the piston due to the interior region cancels with that due to the exterior region, thus render a finite well-defined Casimir force acting on the piston. Explicit expressions for the total Casimir force acting on the piston is derived, which show that the Casimir force is always attractive for all the different boundary conditions considered. As a function of a -- the distance from the piston to the opposite wall, it is found that the magnitude of the Casimir force behaves like 1/a41/a^4 when a→0+a\to 0^+ and decays exponentially when a→∞a\to \infty. Moreover, the magnitude of the Casimir force is always a decreasing function of a. On the other hand, passing from massless to massive, we find that the effect of the mass is insignificant when a is small, but the magnitude of the force is decreased for large a in the massive case.Comment: 22 pages, 8 figure

    Extremal black holes, gravitational entropy and nonstationary metric fields

    Full text link
    We show that extremal black holes have zero entropy by pointing out a simple fact: they are time-independent throughout the spacetime and correspond to a single classical microstate. We show that non-extremal black holes, including the Schwarzschild black hole, contain a region hidden behind the event horizon where all their Killing vectors are spacelike. This region is nonstationary and the time tt labels a continuous set of classical microstates, the phase space [ hab(t),Pab(t) ][\,h_{ab}(t), P^{ab}(t)\,], where habh_{ab} is a three-metric induced on a spacelike hypersurface Σt\Sigma_t and PabP^{ab} is its momentum conjugate. We determine explicitly the phase space in the interior region of the Schwarzschild black hole. We identify its entropy as a measure of an outside observer's ignorance of the classical microstates in the interior since the parameter tt which labels the states lies anywhere between 0 and 2M. We provide numerical evidence from recent simulations of gravitational collapse in isotropic coordinates that the entropy of the Schwarzschild black hole stems from the region inside and near the event horizon where the metric fields are nonstationary; the rest of the spacetime, which is static, makes no contribution. Extremal black holes have an event horizon but in contrast to non-extremal black holes, their extended spacetimes do not possess a bifurcate Killing horizon. This is consistent with the fact that extremal black holes are time-independent and therefore have no distinct time-reverse.Comment: 12 pages, 2 figures. To appear in Class. and Quant. Gravity. Based on an essay selected for honorable mention in the 2010 gravity research foundation essay competitio
    • …
    corecore