202 research outputs found

    The challenges of monitoring national climate policy: learning lessons from the EU

    Get PDF
    One of the most central and novel features of the new climate governance architecture emerging from the 2015 Paris Agreement is the transparency framework committing countries to provide, inter alia, regular progress reports on national pledges to address climate change. Many countries will rely on public policies to turn their pledges into action. This article focuses on the EU’s experience with monitoring national climate policies in order to understand the challenges that are likely to arise as the Paris Agreement is implemented around the world. To do so, the research employs – for the first time – comparative empirical data submitted by states to the EU’s monitoring system. Our findings reveal how the EU’s predominantly technical interpretation of four international reporting quality criteria – an approach borrowed from reporting on GHG fluxes – has constrained knowledge production and stymied debate on the performance of individual climate policies. Key obstacles to more in-depth reporting include not only political concerns over reporting burdens and costs, but also struggles over who determines the nature of climate policy monitoring, the perceived usefulness of reporting information, and the political control that policy knowledge inevitably generates. Given the post-Paris drive to achieve greater transparency, the EU’s experience offers a sobering reminder of the political and technical challenges associated with climate policy monitoring, challenges that are likely to bedevil the Paris Agreement for decades to come

    Using the NOAA Advanced Very High Resolution Radiometer to characterise temporal and spatial trends in water temperature of large European lakes

    Get PDF
    Lakes are major repositories of biodiversity, provide multiple ecosystem services and are widely recognised as key indicators of environmental change. However, studies of lake response to drivers of change at a pan-European scale are exceptionally rare. The need for such studies has been given renewed impetus by concerns over environmental change and because of international policies, such as the EU Water Framework Directive (WFD), which impose legal obligations to monitor the condition of European lakes towards sustainable systems with good ecological status. This has highlighted the need for methods that can be widely applied across large spatial and temporal scales and produce comparable results. Remote sensing promises much in terms of information provision, but the spatial transferability and temporal repeatability of methods and relationships observed at individual or regional case studies remains unproven at the continental scale. This study demonstrates that NOAA Advanced Very High Resolution Radiometer (AVHRR) thermal data are capable of producing highly accurate (R2 &gt; 0.9) lake surface temperature (LST) estimates in lakes with variable hydromorphological characteristics and contrasting thermal regimes. Validation of the approach using archived AVHRR thermal data for Lake Geneva produced observations that were consistent with field data for equivalent time periods. This approach provides the basis for generalizing temporal and spatial trends in European lake surface temperature over several decades and confirms the potential of the full 30 year NOAA AVHRR archive to can provide AVHRR-derived LST estimates to help inform European policies on lake water quality.</p

    Testing multiple pathways for impacts of the non-native Black-headed Weaver Ploceus melanocephalus on native birds in Iberia in the early phase of invasion

    Get PDF
    Not all non-native species have strong negative impacts on native species. It is desirable to assess whether a non-native species will have a negative impact at an early stage in the invasion process, when management options such as eradication are still available. Although it may be difficult to detect early impacts of non-native species, it is necessary to ensure that management decisions can be based on case-specific scientific evidence. We assess the impacts of a non-native bird, the Black-headed Weaver Ploceus melanocephalus, at an early stage in its invasion of the Iberian Peninsula. To do this we identify potential pathways by which competition for shared resources by Black-headed Weavers could lead to population declines in two ecologically similar native species, and generate hypotheses to test for evidence of competition along these pathways. Black-headed Weavers could potentially impact native species by displacing them from nesting habitat, or by reducing habitat quality. We found no evidence for either potential competition pathway, suggesting that Black-headed Weavers do not currently compete with the two native species. However, it is possible that mechanisms that currently allow coexistence may not operate once Black-headed Weavers reach higher population densities or different habitats

    How big is big enough? Toward a sustainable future by examining alternatives to the conventional economic growth paradigm

    Get PDF
    This study addresses how the sustainability crisis may be overcome by using alternatives to the conventional economic growth paradigm. Based on a literature review, the paper identifies and discusses three alternatives, namely negative, zero and positive economic growth. These alternatives are compared from a feasibility and policy perspective in relation to the transition toward sustainable development. The three alternatives are associated with very far‐reaching sets of policies that have different focal points with regard to how the paradigm shift from the conventional growth paradigm can be realized. All these alternatives, however, challenge the effectiveness of market forces. The shortcomings of the alternatives (resistance to voluntary transition with negative or zero growth, no proper consideration of the rebound effect for positive growth) hinder the transition and must be further addressed by policy‐makers in public and private sectors, as well as by civil society

    Heating with biomass in the United Kingdom: Lessons from New Zealand

    Get PDF
    In this study we review the current status of residential solid fuel (RSF) use in the UK and compare it with New Zealand, which has had severe wintertime air quality issues for many years that is directly attributable to domestic wood burning in heating stoves. Results showed that RSF contributed to more than 40 μg m−3 PM10 and 10 μg m−3 BC in some suburban locations of New Zealand in 2006, with significant air quality and climate impacts. Models predict RSF consumption in New Zealand to decrease slightly from 7 PJ to 6 PJ between 1990 and 2030, whereas consumption in the UK increases by a factor of 14. Emissions are highest from heating stoves and fireplaces, and their calculated contribution to radiative forcing in the UK increases by 23% between 2010 and 2030, with black carbon accounting for more than three quarters of the total warming effect. By 2030, the residential sector accounts for 44% of total BC emissions in the UK and far exceeds emissions from the traffic sector. Finally, a unique bottom-up emissions inventory was produced for both countries using the latest national survey and census data for the year 2013/14. Fuel- and technology-specific emissions factors were compared between multiple inventories including GAINS, the IPCC, the EMEP/EEA and the NAEI. In the UK, it was found that wood consumption in stoves was within 30% of the GAINS inventory, but consumption in fireplaces was substantially higher and fossil fuel consumption is more than twice the GAINS estimate. As a result, emissions were generally a factor of 2–3 higher for biomass and 2–6 higher for coal. In New Zealand, coal and lignite consumption in stoves is within 24% of the GAINS inventory estimate, but wood consumption is more than 7 times the GAINS estimate. As a result, emissions were generally a factor of 1–2 higher for coal and several times higher for wood. The results of this study indicate that emissions from residential heating stoves and fireplaces may be underestimated in climate models. Emissions are increasing rapidly in the UK which may result in severe wintertime air quality reductions, as seen in New Zealand, and contribute to climate warming unless controls are implemented such as the Ecodesign emissions limits

    Is an ecosystem services-based approach developed for setting specific protection goals for plant protection products applicable to other chemicals?

    Get PDF
    Clearly defined protection goals specifying what to protect, where and when, are required for designing scientifically sound risk assessments and effective risk management of chemicals. Environmental protection goals specified in EU legislation are defined in general terms, resulting in uncertainty in how to achieve them. In 2010, the European Food Safety Authority (EFSA) published a framework to identify more specific protection goals based on ecosystem services potentially affected by plant protection products. But how applicable is this framework to chemicals with different emission scenarios and receptor ecosystems? Four case studies used to address this question were: (i) oil refinery waste water exposure in estuarine environments; (ii) oil dispersant exposure in aquatic environments; (iii) down the drain chemicals exposure in a wide range of ecosystems (terrestrial and aquatic); (iv) persistent organic pollutant exposure in remote (pristine) Arctic environments. A four-step process was followed to identify ecosystems and services potentially impacted by chemical emissions and to define specific protection goals. Case studies demonstrated that, in principle, the ecosystem services concept and the EFSA framework can be applied to derive specific protection goals for a broad range of chemical exposure scenarios. By identifying key habitats and ecosystem services of concern, the approach offers the potential for greater spatial and temporal resolution, together with increased environmental relevance, in chemical risk assessments. With modifications including improved clarity on terminology/definitions and further development/refinement of the key concepts, we believe the principles of the EFSA framework could provide a methodical approach to the identification and prioritization of ecosystems, ecosystem services and the service providing units that are most at risk from chemical exposure

    Evaluating and expanding the European Union's protected-area network toward potential post-2020 coverage targets

    No full text
    The Convention on Biological Diversity's (CBD) strategic plan will expire in 2020, but biodiversity loss is ongoing. Scientists call for more ambitious targets in the next agreement. The nature-needs-half movement, for example, has advocated conserving half of Earth to solve the biodiversity crisis, which has been translated to protecting 50 of each ecoregion. We evaluated current protection levels of ecoregions in the territory of one of the CBD's signatories, the European Union (EU). We also explored the possible enlargement of the Natura 2000 network to implement 30 or 50 ecoregion coverage in the EU member states’ protected area (PA) network. Based on the most recent land-use data, we examined whether ecoregions have enough natural area left to reach such high coverage targets. We used a spatially explicit mixed integer programing model to estimate the least-cost expansion of the PA network based on 3 scenarios that put different emphasis on total conservation cost, ecological representation of ecosystems, or emphasize an equal share of the burden among member states. To realize 30 and 50 ecoregion coverage, the EU would need to add 6.6 and 24.2, respectively, of its terrestrial area to its PA network. For all 3 scenarios, the EU would need to designate most recommended new PAs in seminatural forests and other semi- or natural ecosystems. Because 15 ecoregions did not have enough natural area left to implement the ecoregion-coverage targets, some member states would also need to establish new PAs on productive land, allocating the largest share to arable land. Thirty percent ecoregion coverage was met by protecting remaining natural areas in all ecoregions except 3, where productive land would also need to be included. Our results support discussions of higher ecoregions protection targets for post-2020 biodiversity frameworks. © 2020 The Authors. Conservation Biology published by Wiley Periodicals, Inc. on behalf of Society for Conservation Biology

    City Blueprints: Baseline Assessments of Sustainable Water Management in 11 Cities of the Future

    Get PDF
    The necessity of Urban Water Cycle Services (UWCS) adapting to future stresses calls for changes that take sustainability into account. Megatrends (e.g. population growth, water scarcity, pollution and climate change) pose urgent water challenges in cities. In a previous paper, a set of indicators, i.e., the City Blueprint has been developed to assess the sustainability ofUWCS (Van Leeuwen et al.,Wat Resour Manage 26:2177¿2197, 2012). In this paper this approach has been applied in 9 cities and regions in Europe (Amsterdam, Algarve, Athens, Bucharest, Hamburg, Reggio Emilia, Rotterdam, Oslo and Cities of Scotland) and in 2 African cities in Angola (Kilamba Kiaxi) and Tanzania (Dar es Salaam). The assessments showed that cities vary considerably with regard to the sustainability of theUWCS. This is also captured in the Blue City Index (BCI), the arithmetic mean of 24 indicators comprising the City Blueprint (Van Leeuwen et al., Wat Resour Manage 26:2177¿2197, 2012). Theoretically, the BCI has a minimum score of 0 and a maximum score of 10. The actual BCIs in the 11 cities studied varied from 3.31 (Kilamba Kiaxi) to 7.72 (Hamburg). The BCI was positively correlated with the Gross Domestic Product (GDP) per person, the ambitions of the local authorities regarding the sustainability of the UWCS, the voluntary participation index (VPI) and all governance indicators according to the World Bank. The study demonstrated that the variability in sustainability among the UWCS of cities offers great opportunities for short-term and long-term improvements, provided that cities share their best practices.Van Leeuwen, CJ. (2013). City Blueprints: Baseline Assessments of Sustainable Water Management in 11 Cities of the Future. Water resources management. https://doi.org/10.1007/s11269-013-0462-5Bai X (2007) Industrial ecology and the global impacts of cities. J Industr Ecol 11:1–6Brown RR, Keath N, Wong THF (2009) Urban water management in cities: Historical, current and future regimes. Water Sci Technol 59:847–855De Graaf R, van de Giessen N, van de Ven F (2007a) Alternative water management options to reduce vulnerability for climate change in the Netherlands. Nat Hazards 5:407–422De Graaf RE, van de Giessen NC, van de Ven FHM (2007b) The closed city as a strategy to reduce vulnerability of urban areas for climate change. Water Sci Technol 56:165–173EEA (2010) European Environment Agency. The European environment. State and outlook 2010. Synthesis. Copenhagen, DenmarkEEA (2012) European Environment Agency. Urban adaptation to climate change in Europe. Challenges and opportunities for cities together with supportive national and European policies. Synthesis, Copenhagen, DenmarkEFILWC (2006) First European quality of life survey: participation in civil society. European Foundation for the Improvement of Living and Working Conditions, Dublin. http://www.eurofound.europa.eu/publications/htmlfiles/ef0676.htm . Accessed 21 February 2011Engel K, Jokiel D, Kraljevic A, Geiger M, Smith K (2011) Big cities. Big water. Big challenges. Water in an urbanizing world. World wildlife fund, KoberichEnvironmental Performance Index (2010) http://www.epi2010.yale.edu/Metrics/WaterEffectsOnEcosystem . Accessed 30 March 2012European Commission (2012) Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions. A Blueprint to Safeguard Europe’s Water Resources. COM (2012)673 finalEuropean Commission (2013) European Innovation Partnership on water (EIP Water). http://ec.europa.eu/environment/water/innovationpartnership/European green city index (2009) Assessing the environmental impact of Europe’s major cities. A research project conducted by the Economist Intelligence Unit, http://www.siemens.com/press/pool/de/events/corporate/2009-12-Cop15/European_Green_City_Index.pdf . Accessed 20 February 2011Grimm NB, Faeth SH, Golubiewski NE, Redman CL, Wu J, Bai X, Briggs JM (2008) Global change and the ecology of cities. Science 319(5864):756–760Hoekstra AY, Mekonnen MM, Chapagain AK, Mathews RE, Richter BD (2012) Global monthly water scarcity: Blue water footprints versus blue water availability. PLoS ONE 7(2):e32688. doi: 10.1371/journal.pone.0032688IMF (2012) Gross Domestic Product (international dollars) as provided by the International Monetary Fund for 2010–2011: http://en.wikipedia.org/wiki/List_of_countries_by_GDP_(PPP)_per_capita . Accessed October 2012Kaufman D, Kraay A, Mastruzzi M (2010) The worldwide governance indicators. Methodology and analytical issues. World Bank Policy Research Working Paper 5430. World Bank, Washington DCLange P, Driessen PJ, Sauer A, Borneman B, Burger P (2013) Governing towards sustainability – conceptualizing modes of governance. J Environ Policy Planning 15:403–425Makropoulos CK, Butler D (2010) Distributed water infrastructure for sustainable communities. Water Resour Manag 24(11):2795–2816Mekonnen MM, Hoekstra AY (2011) National water footprint accounts: the green, blue and grey water footprint of production and consumption. Volumes 1 and 2. Value of Water Research Report Series No. 50. UNESCO-IHE, Delft, the NetherlandsNorman E, Bakker K, Cook C, Dunn G, Allen D (2010) Water security: A primer. Policy report. Fostering water security in Canada Project www.watergovernance.ca Accessed 20 September 2013Philip R, Anton B, van der Steen P (2011) SWITCH training kit. Integrated urban water management in the city of the future. Module 1. Strategic planning, ICLEI, Freiburg, GermanyPrüss-Üstün A, Bos R, Gore F, Bartram J (2008) Safer water, better health: Costs, benefits and sustainability of interventions to protect and promote health. World Health Organization, GenevaRozos E, Makropoulos C (2013) Source to tap urban water cycle modelling. Environ Model Softw 41:139–150SIWI (2012) Stockholm International Water Institute. Statistics. http://www.siwi.org/sa/node.asp?node=159 Accessed 20 December, 2012Ugarelli R, Pachioli M, Di Federico V (2009) Planning maintenance strategies for Italian urban drainage systems applying CARE-S. In: Allegre H, do Céu Almeida M (eds) Strategic asset management of water supply and wastewater infrastructures. IWA Publishing, London, pp 471–486UN (2012) World urbanization prospects: The 2011 revision. UN, New York, USA. http://esa.un.org/unup/ . Accessed 30 November 2012UNDP (2004) Water governance for poverty reduction. USA, New YorkUNEP (2008) Every drop counts; environmentally sound technologies for urban and domestic water use efficiency. Switzerland, GenevaUNEP (2012) Fifth global environment outlook: Environment for the future we want. Switzerland, GenevaUNESCO (2012) Managing water under uncertainty and risk. Facts and figures from the UN world water development report 4. http://unesdoc.unesco.org/images/0021/002154/215492e.pdf . Accessed 20 December 2012UN-Habitat (2010). Climate change strategy 2010–2013. Urban Environmental Planning Branch, Nairobi, Kenia. http://www.google.nl/search?sourceid=navclient&ie=UTF-8&rlz=1T4MXGB_enNL512NL512&q=Climate+change+strategy+2010-2013 . Accessed 20 December 2012Van Leeuwen CJ (2007) Introduction. In: Van Leeuwen CJ, Vermeire TG (eds) Risk Assessment of Chemicals. An Introduction. Springer, Dordrecht, 2nd edn, pp. 1–36Van Leeuwen CJ, Frijns J, Van Wezel A, Van De Ven FHM (2012) City blueprints: 24 indicators to assess the sustainability of the urban water cycle. Wat Resour Manage 26:2177–2197Van Leeuwen CJ, Chandy PC (2013) The city blueprint: Experiences with the implementation of 24 indicators to assess the sustainability of the urban water cycle. Water Sci Technol 13(3):769–781Van Leeuwen K, Marques RC (2013) Current state of sustainability of urban water cycle services. Transition to the Urban Water Services of tomorrow (TRUST) report D11.1. http://www.trust-i.net/downloads/index.php?iddesc=682030 Water Resources Group (2009) Charting our water future. Economic framework to inform decisionmaking. West Perth, USA. http://www.mckinsey.com/App_Media/Reports/Water/Charting_Our_Water_Future_Full_Report_001.pdf . Accessed 20 February 2011World Bank (2013) Worldwide Governance Indicators. http://info.worldbank.org/governance/wgi/index.asp . Accessed 30 March 2013.World Economic Forum (2013) Global Risks, 8th edn. Geneva, Switzerland. http://reports.weforum.org/global-risks-2013/ Accessed 30 March 201
    corecore