57 research outputs found

    Double Brooding by the Northern Wheatear on Baffin Island

    Get PDF
    Most Arctic-breeding passerines raise a single brood in a season, presumably because the short Arctic summer does not provide sufficient time to raise a second brood. Here we document the first cases of two broods being raised or attempted, after successful fledging of a first brood, in an Arctic-breeding population of Northern Wheatears Oenanthe oenanthe, at Iqaluit, Nunavut, Canada, in 2010 and 2011. In one case, the same pair was involved in raising both broods. In a second case, the female that raised the first brood was mated to a different male for her second brood. In a third case, it was not known whether the same male was involved in a female’s attempts to raise two broods. The three females that attempted to raise two broods started their first clutches four to six days earlier than the estimated median date of laying first eggs and represented about 6% of all females in the study population. Potential constraints on raising two broods include not only the shortness of the summer season but also the nature and abundance of the food supply, trade-offs between the success of the first brood and that of the second brood, and effects of the one- and two-brood strategies on the survival and future reproductive output of the adults.La plupart des passereaux nicheurs de l’Arctique n’élèvent qu’une nichée par saison, vraisemblablement parce l’été est trop court dans l’Arctique, ce qui ne laisse pas de temps pour une deuxième nichée. Ici, nous décrivons les premiers cas pour lesquels deux nichées ont été élevées ou tentées d’être élevées, après le succès d’envol de la première nichée chez une population de traquets motteux (Oenanthe oenanthe) nichant dans l’Arctique, à Iqaluit, au Nunavut, Canada, en 2010 et en 2011. Dans un des cas, le même couple d’oiseaux a élevé les deux nichées. Dans un deuxième cas, la femelle qui a élevé la première nichée a eu sa deuxième nichée avec un autre mâle. Dans un troisième cas, nous ne savons pas si le mâle était le même pour les deux nichées. Les trois femelles qui ont essayé d’élever deux nichées ont fait leur première ponte de quatre à six jours plus tôt que la date médiane estimée de ponte des premiers oeufs, ce qui a représenté environ 6 % de toutes les femelles à l’étude. Parmi les contraintes auxquelles font face les femelles qui tentent d’élever deux nichées, notons non seulement les courts étés, mais aussi la nature et l’abondance des approvisionnements alimentaires, les concessions mutuelles entre le succès de la première nichée et celui de la deuxième nichée, et les effets des stratégies d’une nichée ou de deux nichées sur la survie et l’efficacité de la reproduction future des adultes

    Using stable-hydrogen isotopes to reveal immigration in an Arctic-breeding songbird population

    Get PDF
    Background: Knowledge of immigration and emigration rates is crucial for understanding of population dynamics, yet little is known about these vital rates, especially for arctic songbirds. We estimated immigration in an Arctic population of northern wheatears on Baffin Island, Canada, by the use of stable hydrogen isotopes in tail feathers (d2HK). We assumed that d2HK values of juvenile (hatch-year) feathers grown at the breeding grounds were representative of the local population, while those of breeding adults were indicative of where they grew their feathers during their postbreeding molt the previous year. The extent to which adul

    Phenology of the avian spring migratory passage in Europe and North America : Asymmetric advancement in time and increase in duration

    Get PDF
    Climate change has been shown to shift the seasonal timing (i.e. phenology) and distribution of species. The phenological effects of climate change on living organisms have often been tested using first occurrence dates, which may be uninformative and biased. More rarely investigated is how different phases of a phenological sequence (e.g. beginning, central tendency and end) or its duration have changed over time. This type of analysis requires continuous observation throughout the phenological event over multiple years, and such data sets are rare. In this study we examined the impact of temperature on long-term change of passage timing and duration of the spring migration period in birds, and which species' traits explain species-specific variation. Data used covered 195 species from 21 European and Canadian bird observatories from which systematic daily sampling protocols were available. Migration dates were negatively associated with early spring temperature and timings had in general advanced in 57 years. Short-distance migrants advanced the beginning of their migration more than long-distance migrants when corrected for phylogenic relatedness, but such a difference was not found in other phases of migration. The advancement of migration has generally been greater for the beginning and median phases of migration relative to the end, leading to extended spring migration seasons. Duration of the migration season increased with increasing temperature. Phenological changes have also been less noticeable in Canada even when corrected for rate of change in temperature. To visualize long-term changes in phenology, we constructed the first multi-species spring migration phenology indicator to describe general changes in median migration dates in the northern hemisphere. The indicator showed an average advancement of one week during five decades across the continents (period 1959-2015). The indicator is easy to update with new data and we therefore encourage future research to investigate whether the trend towards longer periods of occurrence or emergence in spring is also evident in other migratory populations. Such phenological changes may influence detectability in monitoring schemes, and may have broader implications on population and community dynamics.Peer reviewe

    Intention Understanding in Autism

    Get PDF
    When we observe a motor act (e.g. grasping a cup) done by another individual, we extract, according to how the motor act is performed and its context, two types of information: the goal (grasping) and the intention underlying it (e.g. grasping for drinking). Here we examined whether children with autistic spectrum disorder (ASD) are able to understand these two aspects of motor acts. Two experiments were carried out. In the first, one group of high-functioning children with ASD and one of typically developing (TD) children were presented with pictures showing hand-object interactions and asked what the individual was doing and why. In half of the “why” trials the observed grip was congruent with the function of the object (“why-use” trials), in the other half it corresponded to the grip typically used to move that object (“why-place” trials). The results showed that children with ASD have no difficulties in reporting the goals of individual motor acts. In contrast they made several errors in the why task with all errors occurring in the “why-place” trials. In the second experiment the same two groups of children saw pictures showing a hand-grip congruent with the object use, but within a context suggesting either the use of the object or its placement into a container. Here children with ASD performed as TD children, correctly indicating the agent's intention. In conclusion, our data show that understanding others' intentions can occur in two ways: by relying on motor information derived from the hand-object interaction, and by using functional information derived from the object's standard use. Children with ASD have no deficit in the second type of understanding, while they have difficulties in understanding others' intentions when they have to rely exclusively on motor cues

    Contributions of phonological and verbal working memory to language development in adolescents with fragile X syndrome

    Get PDF
    Fragile X syndrome (FXS) is the most common inherited cause of intellectual disability. Although language delays are frequently observed in FXS, neither the longitudinal course of language development nor its cognitive predictors are well understood. The present study investigated whether phonological and working memory skills are predictive of growth in vocabulary and syntax in individuals with FXS during adolescence. Forty-four individuals with FXS (mean age = 12.61 years) completed assessments of phonological memory (nonword repetition and forward digit recall), verbal working memory (backward digit recall), vocabulary, syntax, and nonverbal cognition. Vocabulary and syntax skills were reassessed at a 2-year follow-up. In a series of analyses that controlled for nonverbal cognitive ability and severity of autism symptoms, the relative contributions of phonological and working memory to language change over time were investigated. These relationships were examined separately for boys and girls. In boys with FXS, phonological memory significantly predicted gains in vocabulary and syntax skills. Further, verbal working memory was uniquely associated with vocabulary gains among boys. In girls with FXS, phonological and working memory skills showed no relationship with language change across the 2-year time period. Our findings indicate that, for adolescent boys with FXS, acquisition of vocabulary and syntax may be constrained by the ability to maintain and manipulate phonological representations online. Implications for the identification and treatment of language disorders in this population are discussed. The present study is the first to identify specific cognitive mechanisms contributing to language growth over time in individuals with FXS

    The SPARC Toroidal Field Model Coil Program

    Get PDF

    Genomic Relationships, Novel Loci, and Pleiotropic Mechanisms across Eight Psychiatric Disorders

    Get PDF
    Genetic influences on psychiatric disorders transcend diagnostic boundaries, suggesting substantial pleiotropy of contributing loci. However, the nature and mechanisms of these pleiotropic effects remain unclear. We performed analyses of 232,964 cases and 494,162 controls from genome-wide studies of anorexia nervosa, attention-deficit/hyper-activity disorder, autism spectrum disorder, bipolar disorder, major depression, obsessive-compulsive disorder, schizophrenia, and Tourette syndrome. Genetic correlation analyses revealed a meaningful structure within the eight disorders, identifying three groups of inter-related disorders. Meta-analysis across these eight disorders detected 109 loci associated with at least two psychiatric disorders, including 23 loci with pleiotropic effects on four or more disorders and 11 loci with antagonistic effects on multiple disorders. The pleiotropic loci are located within genes that show heightened expression in the brain throughout the lifespan, beginning prenatally in the second trimester, and play prominent roles in neurodevelopmental processes. These findings have important implications for psychiatric nosology, drug development, and risk prediction.Peer reviewe

    Analysis of shared heritability in common disorders of the brain

    Get PDF
    ience, this issue p. eaap8757 Structured Abstract INTRODUCTION Brain disorders may exhibit shared symptoms and substantial epidemiological comorbidity, inciting debate about their etiologic overlap. However, detailed study of phenotypes with different ages of onset, severity, and presentation poses a considerable challenge. Recently developed heritability methods allow us to accurately measure correlation of genome-wide common variant risk between two phenotypes from pools of different individuals and assess how connected they, or at least their genetic risks, are on the genomic level. We used genome-wide association data for 265,218 patients and 784,643 control participants, as well as 17 phenotypes from a total of 1,191,588 individuals, to quantify the degree of overlap for genetic risk factors of 25 common brain disorders. RATIONALE Over the past century, the classification of brain disorders has evolved to reflect the medical and scientific communities' assessments of the presumed root causes of clinical phenomena such as behavioral change, loss of motor function, or alterations of consciousness. Directly observable phenomena (such as the presence of emboli, protein tangles, or unusual electrical activity patterns) generally define and separate neurological disorders from psychiatric disorders. Understanding the genetic underpinnings and categorical distinctions for brain disorders and related phenotypes may inform the search for their biological mechanisms. RESULTS Common variant risk for psychiatric disorders was shown to correlate significantly, especially among attention deficit hyperactivity disorder (ADHD), bipolar disorder, major depressive disorder (MDD), and schizophrenia. By contrast, neurological disorders appear more distinct from one another and from the psychiatric disorders, except for migraine, which was significantly correlated to ADHD, MDD, and Tourette syndrome. We demonstrate that, in the general population, the personality trait neuroticism is significantly correlated with almost every psychiatric disorder and migraine. We also identify significant genetic sharing between disorders and early life cognitive measures (e.g., years of education and college attainment) in the general population, demonstrating positive correlation with several psychiatric disorders (e.g., anorexia nervosa and bipolar disorder) and negative correlation with several neurological phenotypes (e.g., Alzheimer's disease and ischemic stroke), even though the latter are considered to result from specific processes that occur later in life. Extensive simulations were also performed to inform how statistical power, diagnostic misclassification, and phenotypic heterogeneity influence genetic correlations. CONCLUSION The high degree of genetic correlation among many of the psychiatric disorders adds further evidence that their current clinical boundaries do not reflect distinct underlying pathogenic processes, at least on the genetic level. This suggests a deeply interconnected nature for psychiatric disorders, in contrast to neurological disorders, and underscores the need to refine psychiatric diagnostics. Genetically informed analyses may provide important "scaffolding" to support such restructuring of psychiatric nosology, which likely requires incorporating many levels of information. By contrast, we find limited evidence for widespread common genetic risk sharing among neurological disorders or across neurological and psychiatric disorders. We show that both psychiatric and neurological disorders have robust correlations with cognitive and personality measures. Further study is needed to evaluate whether overlapping genetic contributions to psychiatric pathology may influence treatment choices. Ultimately, such developments may pave the way toward reduced heterogeneity and improved diagnosis and treatment of psychiatric disorders

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead
    corecore