23 research outputs found
A <i>Herschel</i> and BIMA study of the sequential star formation near the W 48A H II region
We present the results of Herschel HOBYS (Herschel imaging survey of OB Young Stellar objects) photometric mapping combined with Berkeley Illinois Maryland Association (BIMA) observations and additional archival data, and perform an in-depth study of the evolutionary phases of the star-forming clumps in W 48A and their surroundings. Age estimates for the compact sources were derived from bolometric luminosities and envelope masses, which were obtained from the dust continuum emission, and agree within an order of magnitude with age estimates from molecular line and radio data. The clumps in W 48A are linearly aligned by age (east-old to west-young): we find a ultra-compact (UC) H II region, a young stellar object (YSO) with class II methanol maser emission, a YSO with a massive outflow and finally the NH2D prestellar cores from Pillai et al. This remarkable positioning reflects the (star) formation history of the region. We find that it is unlikely that the star formation in the W 48A molecular cloud was triggered by the UC H II region and discuss the Aquila supershell expansion as a major influence on the evolution of W 48A. We conclude that the combination of Herschel continuum data with interferometric molecular line and radio continuum data is important to derive trustworthy age estimates and interpret the origin of large-scale structures through kinematic information
Supplement: "Localization and broadband follow-up of the gravitational-wave transient GW150914" (2016, ApJL, 826, L13)
This Supplement provides supporting material for Abbott et al. (2016a). We briefly summarize past electromagnetic (EM) follow-up efforts as well as the organization and policy of the current EM follow-up program. We compare the four probability sky maps produced for the gravitational-wave transient GW150914, and provide additional details of the EM follow-up observations that were performed in the different bands
Localization and broadband follow-up of the gravitational-wave transient GW150914
A gravitational-wave (GW) transient was identified in data recorded by the Advanced Laser Interferometer Gravitational-wave Observatory (LIGO) detectors on 2015 September 14. The event, initially designated G184098 and later given the name GW150914, is described in detail elsewhere. By prior arrangement, preliminary estimates of the time, significance, and sky location of the event were shared with 63 teams of observers covering radio, optical, near-infrared, X-ray, and gamma-ray wavelengths with ground- and space-based facilities. In this Letter we describe the low-latency analysis of the GW data and present the sky localization of the first observed compact binary merger. We summarize the follow-up observations reported by 25 teams via private Gamma-ray Coordinates Network circulars, giving an overview of the participating facilities, the GW sky localization coverage, the timeline, and depth of the observations. As this event turned out to be a binary black hole merger, there is little expectation of a detectable electromagnetic (EM) signature. Nevertheless, this first broadband campaign to search for a counterpart of an Advanced LIGO source represents a milestone and highlights the broad capabilities of the transient astronomy community and the observing strategies that have been developed to pursue neutron star binary merger events. Detailed investigations of the EM data and results of the EM follow-up campaign are being disseminated in papers by the individual teams
Localization and Broadband Follow-up of the Gravitational-wave Transient GW150914
A gravitational-wave (GW) transient was identified in data recorded by
the Advanced Laser Interferometer Gravitational-wave Observatory (LIGO)
detectors on 2015 September 14. The event, initially designated G184098
and later given the name GW150914, is described in detail elsewhere. By
prior arrangement, preliminary estimates of the time, significance, and
sky location of the event were shared with 63 teams of observers
covering radio, optical, near-infrared, X-ray, and gamma-ray wavelengths
with ground- and space-based facilities. In this Letter we describe the
low-latency analysis of the GW data and present the sky localization of
the first observed compact binary merger. We summarize the follow-up
observations reported by 25 teams via private Gamma-ray Coordinates
Network circulars, giving an overview of the participating facilities,
the GW sky localization coverage, the timeline, and depth of the
observations. As this event turned out to be a binary black hole merger,
there is little expectation of a detectable electromagnetic (EM)
signature. Nevertheless, this first broadband campaign to search for a
counterpart of an Advanced LIGO source represents a milestone and
highlights the broad capabilities of the transient astronomy community
and the observing strategies that have been developed to pursue neutron
star binary merger events. Detailed investigations of the EM data and
results of the EM follow-up campaign are being disseminated in papers by
the individual teams.
</p
Localization and broadband follow-up of the gravitational-wave transient GW150914
A gravitational-wave transient was identified in data recorded by the Advanced LIGO detectors on 2015 September 14. The event candidate, initially designated G184098 and later given the name GW150914, is described in detail elsewhere. By prior arrangement, preliminary estimates of the time, significance, and sky location of the event were shared with 63 teams of observers covering radio, optical, near-infrared, X-ray, and gamma-ray wavelengths with ground- and space-based facilities. In this Letter we describe the low-latency analysis of the gravitational wave data and present the sky localization of the first observed compact binary merger. We summarize the follow-up observations reported by 25 teams via private Gamma-ray Coordinates Network Circulars, giving an overview of the participating facilities, the gravitational wave sky localization coverage, the timeline and depth of the observations. As this event turned out to be a binary black hole merger, there is little expectation of a detectable electromagnetic signature. Nevertheless, this first broadband campaign to search for a counterpart of an Advanced LIGO source represents a milestone and highlights the broad capabilities of the transient astronomy community and the observing strategies that have been developed to pursue neutron star binary merger events. Detailed investigations of the electromagnetic data and results of the electromagnetic follow-up campaign will be disseminated in the papers of the individual teams