76 research outputs found

    Structure of the vacuum states in the presence of isovector and isoscalar pairing correlations

    Get PDF
    The long standing problem of proton-neutron pairing and, in particular, the limitations imposed on the solutions by the available symmetries, is revisited. We look for solutions with non-vanishing expectation values of the proton, the neutron and the isoscalar gaps. For an equal number of protons and neutrons we find two solutions where the absolute values of proton and neutrons gaps are equal but have the same or opposite sign. The behavior and structure of these solutions differ for spin saturated (single l-shell) and spin unsaturared systems (single j-shell). In the former case the BCS results are checked against an exact calculation.Comment: 19 pages, 5 postscript figure

    Boson mappings and four-particle correlations in algebraic neutron-proton pairing models

    Get PDF
    Neutron-proton pairing correlations are studied within the context of two solvable models, one based on the algebra SO(5) and the other on the algebra SO(8). Boson-mapping techniques are applied to these models and shown to provide a convenient methodological tool both for solving such problems and for gaining useful insight into general features of pairing. We first focus on the SO(5) model, which involves generalized T=1 pairing. Neither boson mean-field methods nor fermion-pair approximations are able to describe in detail neutron-proton pairing in this model. The analysis suggests, however, that the boson Hamiltonian obtained from a mapping of the fermion Hamiltonian contains a pairing force between bosons, pointing to the importance of boson-boson (or equivalently four-fermion) correlations with isospin T=0 and spin S=0. These correlations are investigated by carrying out a second boson mapping. Closed forms for the fermion wave functions are given in terms of the fermion-pair operators. Similar techniques are applied -- albeit in less detail -- to the SO(8) model, involving a competition between T=1 and T=0 pairing. Conclusions similar to those of the SO(5) analysis are reached regarding the importance of four-particle correlations in systems involving neutron-proton pairing.Comment: 31 pages, Latex, 3 Postscript figures, uses epsf.sty, submitted to Physical Review

    Dynamic changes in genomic and social structures in third millennium BCE central Europe

    Get PDF
    Europe’s prehistory oversaw dynamic and complex interactions of diverse societies, hitherto unexplored at detailed regional scales. Studying 271 human genomes dated ~4900 to 1600 BCE from the European heartland, Bohemia, we reveal unprecedented genetic changes and social processes. Major migrations preceded the arrival of “steppe” ancestry, and at ~2800 BCE, three genetically and culturally differentiated groups coexisted. Corded Ware appeared by 2900 BCE, were initially genetically diverse, did not derive all steppe ancestry from known Yamnaya, and assimilated females of diverse backgrounds. Both Corded Ware and Bell Beaker groups underwent dynamic changes, involving sharp reductions and complete replacements of Y-chromosomal diversity at ~2600 and ~2400 BCE, respectively, the latter accompanied by increased Neolithic-like ancestry. The Bronze Age saw new social organization emerge amid a ≥40% population turnover.Introduction Results - General sample overview - Bohemia before Corded Ware (pre-CW, before ~2800 BCE) - Corded Ware - Bell Beaker - EBA—Únětice culture Discussion Materials and methods - Processing sites for the newly reported individuals - Sampling - DNA extraction - DNA libraries and in-solution capture - Sequencing - Sex determination and authentication - Genotyping - Mitochondrial and Y chromosome haplogroups - Principal components analysis - Ancestry decomposition and admixture modeling - Y haplogroup frequency simulation

    A Continental-Wide Perspective: The Genepool of Nuclear Encoded Ribosomal DNA and Single-Copy Gene Sequences in North American Boechera (Brassicaceae)

    Get PDF
    74 of the currently accepted 111 taxa of the North American genus Boechera (Brassicaceae) were subject to pyhlogenetic reconstruction and network analysis. The dataset comprised 911 accessions for which ITS sequences were analyzed. Phylogenetic analyses yielded largely unresolved trees. Together with the network analysis confirming this result this can be interpreted as an indication for multiple, independent, and rapid diversification events. Network analyses were superimposed with datasets describing i) geographical distribution, ii) taxonomy, iii) reproductive mode, and iv) distribution history based on phylogeographic evidence. Our results provide first direct evidence for enormous reticulate evolution in the entire genus and give further insights into the evolutionary history of this complex genus on a continental scale. In addition two novel single-copy gene markers, orthologues of the Arabidopsis thaliana genes At2g25920 and At3g18900, were analyzed for subsets of taxa and confirmed the findings obtained through the ITS data

    Stone Age Yersinia pestis genomes shed light on the early evolution, diversity, and ecology of plague

    Get PDF
    The bacterial pathogenYersinia pestisgave rise to devastating outbreaks throughouthuman history, and ancient DNA evidence has shown it afflicted human populations asfar back as the Neolithic.Y. pestisgenomes recovered from the Eurasian Late Neolithic/Early Bronze Age (LNBA) period have uncovered key evolutionary steps that led to itsemergence from aYersinia pseudotuberculosis-like progenitor; however, the number ofreconstructed LNBA genomes are too few to explore its diversity during this criticalperiod of development. Here, we present 17Y. pestisgenomes dating to 5,000 to 2,500y BP from a wide geographic expanse across Eurasia. This increased dataset enabled usto explore correlations between temporal, geographical, and genetic distance. Ourresults suggest a nonflea-adapted and potentially extinct single lineage that persistedover millennia without significant parallel diversification, accompanied by rapid dis-persal across continents throughout this period, a trend not observed in other pathogensfor which ancient genomes are available. A stepwise pattern of gene loss provides fur-ther clues on its early evolution and potential adaptation. We also discover the presenceof theflea-adapted form ofY. pestisin Bronze Age Iberia, previously only identified inin the Caucasus and the Volga regions, suggesting a much wider geographic spread ofthis form ofY. pestis. Together, these data reveal the dynamic nature of plague’s forma-tive years in terms of its early evolution and ecology

    Using Y-chromosome capture enrichment to resolve haplogroup H2 shows new evidence for a two-Path Neolithic expansion to Western Europe

    Get PDF
    Uniparentally-inherited markers on mitochondrial DNA (mtDNA) and the non-recombining regions of the Y chromosome (NRY), have been used for the past 30 years to investigate the history of humans from a maternal and paternal perspective.Researchers have preferred mtDNA due to its abundance in the cells, and comparatively high substitution rate. Conversely, the NRY is less susceptible to back mutations and saturation, and is potentially more informative than mtDNA owing to its longer sequence length. However, due to comparatively poor NRY coverage via shotgun sequencing, and the relatively low and biased representation of Y-chromosome variants on capture arrays such as the 1240K, ancient DNA studies often fail to utilize the unique perspective that the NRY can yield.Here we introduce a new DNA enrichment assay, coined YMCA (Y-mappable capture assay), that targets the “mappable” regions of the NRY. We show that compared to low-coverage shotgun sequencing and 1240K capture, YMCA significantly improves the coverage and number of sites hit on the NRY, increasing the number of Y-haplogroup informative SNPs, and allowing for the identification of previously undiscovered variants.To illustrate the power of YMCA, we show that the analysis of ancient Y-chromosome lineages can help to resolve Y-chromosomal haplogroups. As a case study, we focus on H2, a haplogroup associated with a critical event in European human history: the Neolithic transition. By disentangling the evolutionary history of this haplogroup, we further elucidate the two separate paths by which early farmers expanded from Anatolia and the Near East to western Europe.Competing Interest StatementThe authors have declared no competing interest.Introduction Results and Discussion - Validating the performance of YMCA - Application of YMCA to YHG H2 as a case study - Identifying diagnostic SNPs for improved YHG H2 resolution Discussion Materials and Methods - Data - Contamination quality filtering - Method of Y Haplogroup Assignment - Comparing the Performance of our Y-capture Array Phylogenetic Tree Reconstructio

    An overview of using small punch testing for mechanical characterization of MCrAlY bond coats

    Get PDF
    Considerable work has been carried out on overlay bond coats in the past several decades because of its excellent oxidation resistance and good adhesion between the top coat and superalloy substrate in the thermal barrier coating systems. Previous studies mainly focus on oxidation and diffusion behavior of these coatings. However, the mechanical behavior and the dominant fracture and deformation mechanisms of the overlay bond coats at different temperatures are still under investigation. Direct comparison between individual studies has not yet been achieved due to the fragmentary data on deposition processes, microstructure and, more apparently, the difficulty in accurately measuring the mechanical properties of thin coatings. One of the miniaturized specimen testing methods, small punch testing, appears to have the potential to provide such mechanical property measurements for thin coatings. The purpose of this paper is to give an overview of using small punch testing to evaluate material properties and to summarize the available mechanical properties that include the ductile-to-brittle transition and creep of MCrAlY bond coat alloys, in an attempt to understand the mechanical behavior of MCrAlY coatings over a broad temperature range

    The Beaker phenomenon and the genomic transformation of northwest Europe

    Get PDF
    From around 2750 to 2500 bc, Bell Beaker pottery became widespread across western and central Europe, before it disappeared between 2200 and 1800 bc. The forces that propelled its expansion are a matter of long-standing debate, and there is support for both cultural diffusion and migration having a role in this process. Here we present genome-wide data from 400 Neolithic, Copper Age and Bronze Age Europeans, including 226 individuals associated with Beaker-complex artefacts. We detected limited genetic affinity between Beaker-complex-associated individuals from Iberia and central Europe, and thus exclude migration as an important mechanism of spread between these two regions. However, migration had a key role in the further dissemination of the Beaker complex. We document this phenomenon most clearly in Britain, where the spread of the Beaker complex introduced high levels of steppe-related ancestry and was associated with the replacement of approximately 90% of Britain’s gene pool within a few hundred years, continuing the east-to-west expansion that had brought steppe-related ancestry into central and northern Europe over the previous centuries

    Ten millennia of hepatitis B virus evolution

    Get PDF
    Hepatitis B virus (HBV) has been infecting humans for millennia and remains a global health problem, but its past diversity and dispersal routes are largely unknown. We generated HBV genomic data from 137 Eurasians and Native Americans dated between similar to 10,500 and similar to 400 years ago. We date the most recent common ancestor of all HBV lineages to between similar to 20,000 and 12,000 years ago, with the virus present in European and South American hunter-gatherers during the early Holocene. After the European Neolithic transition, Mesolithic HBV strains were replaced by a lineage likely disseminated by early farmers that prevailed throughout western Eurasia for similar to 4000 years, declining around the end of the 2nd millennium BCE. The only remnant of this prehistoric HBV diversity is the rare genotype G, which appears to have reemerged during the HIV pandemic.Molecular Technology and Informatics for Personalised Medicine and Healt

    Ten millennia of hepatitis B virus evolution

    Get PDF
    Hepatitis B virus (HBV) has been infecting humans for millennia and remains a global health problem, but its past diversity and dispersal routes are largely unknown. We generated HBV genomic data from 137 Eurasians and Native Americans dated between ~10,500 and ~400 years ago. We date the most recent common ancestor of all HBV lineages to between ~20,000 and 12,000 years ago, with the virus present in European and South American hunter-gatherers during the early Holocene. After the European Neolithic transition, Mesolithic HBV strains were replaced by a lineage likely disseminated by early farmers that prevailed throughout western Eurasia for ~4000 years, declining around the end of the 2nd millennium BCE. The only remnant of this prehistoric HBV diversity is the rare genotype G, which appears to have reemerged during the HIV pandemic
    corecore