10 research outputs found

    Sustained release of locally delivered celecoxib provides pain relief for osteoarthritis: a proof of concept in dog patients

    Get PDF
    Objective: Drug delivery platforms that allow for gradual drug release after intra-articular administration have become of much interest as a treatment strategy for osteoarthritis (OA). The aim of this study was to investigate the safety and efficacy of an intra-articular sustained release formulation containing celecoxib (CXB), a cyclooxygenase-2 (COX-2) selective inhibitor. Methods: Amino acid-based polyesteramide microspheres (PEAMs), a biodegradable and non-toxic platform, were loaded with CXB and employed in two in vivo models of arthritis: an acute inflammatory arthritis model in rats (n = 12), and a randomized controlled study in chronic OA dog patients (n = 30). In parallel, the bioactivity of sustained release of CXB was evaluated in monolayer cultures of primary dog chondrocytes under inflammatory conditions. Results: Sustained release of CXB did not alleviate acute arthritis signs in the rat arthritis model, based on pain measurements and synovitis severity. However, in OA dog patients, sustained release of CXB improved limb function as objective parameter of pain and quality of life based on gait analysis and owner questionnaires. It also decreased pain medication dependency over a 2-month period and caused no adverse effects. Prostaglandin E2 levels, a marker for inflammation, were lower in the synovial fluid of CXB-treated dog OA patients and in CXB-treated cultured dog chondrocytes. Conclusion: These results show that local sustained release of CXB is less suitable to treat acute inflammation in arthritic joints, while safe and effective in treating pain in chronic OA in dogs

    Serum potassium and adverse outcomes across the range of kidney function: a CKD Prognosis Consortium meta-analysis.

    Get PDF
    Aims: Both hypo- and hyperkalaemia can have immediate deleterious physiological effects, and less is known about long-term risks. The objective was to determine the risks of all-cause mortality, cardiovascular mortality, and end-stage renal disease associated with potassium levels across the range of kidney function and evaluate for consistency across cohorts in a global consortium. Methods and results: We performed an individual-level data meta-analysis of 27 international cohorts [10 general population, 7 high cardiovascular risk, and 10 chronic kidney disease (CKD)] in the CKD Prognosis Consortium. We used Cox regression followed by random-effects meta-analysis to assess the relationship between baseline potassium and adverse outcomes, adjusted for demographic and clinical characteristics, overall and across strata of estimated glomerular filtration rate (eGFR) and albuminuria. We included 1 217 986 participants followed up for a mean of 6.9 years. The average age was 55 ± 16 years, average eGFR was 83 ± 23 mL/min/1.73 m2, and 17% had moderate- to-severe increased albuminuria levels. The mean baseline potassium was 4.2 ± 0.4 mmol/L. The risk of serum potassium of >5.5 mmol/L was related to lower eGFR and higher albuminuria. The risk relationship between potassium levels and adverse outcomes was U-shaped, with the lowest risk at serum potassium of 4-4.5 mmol/L. Compared with a reference of 4.2 mmol/L, the adjusted hazard ratio for all-cause mortality was 1.22 [95% confidence interval (CI) 1.15-1.29] at 5.5 mmol/L and 1.49 (95% CI 1.26-1.76) at 3.0 mmol/L. Risks were similar by eGFR, albuminuria, renin-angiotensin-aldosterone system inhibitor use, and across cohorts. Conclusions: Outpatient potassium levels both above and below the normal range are consistently associated with adverse outcomes, with similar risk relationships across eGFR and albuminuria

    Change in albuminuria as a surrogate endpoint for progression of kidney disease : a meta-analysis of treatment effects in randomised clinical trials

    No full text

    Grams ME, Sang Y, Ballew SH, et al, for the Chronic Kidney Disease Prognosis Consortium. Predicting timing of clinical outcomes in patients with chronic kidney disease and severely decreased glomerular filtration rate. Kidney Int. 2018;93:1442–1451

    No full text
    International audienceFirst-line therapy of minimal change nephrotic syndrome (MCNS) in adults is extrapolated largely from pediatric studies and consists of high-dose oral corticosteroids. We assessed whether a low corticosteroid dose combined with mycophenolate sodium was superior to a standard oral corticosteroid regimen. We enrolled 116 adults with MCNS in an open-label randomized controlled trial involving 32 French centers. Participants randomly assigned to the test group (n=58) received low-dose prednisone (0.5 mg/kg/day, maximum 40 mg/day) plus enteric-coated mycophenolate sodium 720 mg twice daily for 24 weeks; those who did not achieve complete remission after week 8 were eligible for a second-line regimen (increase in the prednisone dose to 1 mg/kg/day with or without Cyclosporine). Participants randomly assigned to the control group (n=58) received conventional high-dose prednisone (1 mg/kg/day, maximum 80 mg/day) for 24 weeks. The primary endpoint of complete remission after four weeks of treatment was ascertained in 109 participants, with no significant difference between the test and control groups. Secondary outcomes, including remission after 8 and 24 weeks of treatment, did not differ between the two groups. During 52 weeks of follow-up, MCNS relapsed in 15 participants (23.1%) who had achieved the primary outcome. Median time to relapse was similar in the test and control groups (7.1 and 5.1 months, respectively), as was the incidence of serious adverse events. Five participants died from hemorrhage (n=2) or septic shock (n=3), including 2 participants in the test group and 3 in the control group. Thus, in adult patients, treatment with low-dose prednisone plus enteric-coated mycophenolate sodium was not superior to a standard high-dose prednisone regimen to induce complete remission of MCNS

    Change in albuminuria and subsequent risk of end-stage kidney disease: an individual participant-level consortium meta-analysis of observational studies

    Full text link
    Background: Change in albuminuria as a surrogate endpoint for progression of chronic kidney disease is strongly supported by biological plausibility, but empirical evidence to support its validity in epidemiological studies is lacking. We aimed to assess the consistency of the association between change in albuminuria and risk of end-stage kidney disease in a large individual participant-level meta-analysis of observational studies. Methods: In this meta-analysis, we collected individual-level data from eligible cohorts in the Chronic Kidney Disease Prognosis Consortium (CKD-PC) with data on serum creatinine and change in albuminuria and more than 50 events on outcomes of interest. Cohort data were eligible if participants were aged 18 years or older, they had a repeated measure of albuminuria during an elapsed period of 8 months to 4 years, subsequent end-stage kidney disease or mortality follow-up data, and the cohort was active during this consortium phase. We extracted participant-level data and quantified percentage change in albuminuria, measured as change in urine albumin-to-creatinine ratio (ACR) or urine protein-to-creatinine ratio (PCR), during baseline periods of 1, 2, and 3 years. Our primary outcome of interest was development of end-stage kidney disease after a baseline period of 2 years. We defined an end-stage kidney disease event as initiation of kidney replacement therapy. We quantified associations of percentage change in albuminuria with subsequent end-stage kidney disease using Cox regression in each cohort, followed by random-effects meta-analysis. We further adjusted for regression dilution to account for imprecision in the estimation of albuminuria at the participant level. We did multiple subgroup analyses, and also repeated our analyses using participant-level data from 14 clinical trials, including nine clinical trials not in CKD-PC. Findings: Between July, 2015, and June, 2018, we transferred and analysed data from 28 cohorts in the CKD-PC, which included 693 816 individuals (557 583 [80%] with diabetes). Data for 675 904 individuals and 7461 end-stage kidney disease events were available for our primary outcome analysis. Change in ACR was consistently associated with subsequent risk of end-stage kidney disease. The adjusted hazard ratio (HR) for end-stage kidney disease after a 30% decrease in ACR during a baseline period of 2 years was 0·83 (95% CI 0·74–0·94), decreasing to 0·78 (0·66–0·92) after further adjustment for regression dilution. Adjusted HRs were fairly consistent across cohorts and subgroups (ie, estimated glomerular filtration rate, diabetes, and sex), but the association was somewhat stronger among participants with higher baseline ACR than among those with lower baseline ACR (pinteraction<0·0001). In individuals with baseline ACR of 300 mg/g or higher, a 30% decrease in ACR over 2 years was estimated to confer a more than 1% absolute reduction in 10-year risk of end-stage kidney disease, even at early stages of chronic kidney disease. Results were generally similar when we used change in PCR and when study populations from clinical trials were assessed. Interpretation: Change in albuminuria was consistently associated with subsequent risk of end-stage kidney disease across a range of cohorts, lending support to the use of change in albuminuria as a surrogate endpoint for end-stage kidney disease in clinical trials of progression of chronic kidney disease in the setting of increased albuminuria

    How did the evolution of oxygenic photosynthesis influence the temporal and spatial development of the microbial iron cycle on ancient Earth?

    No full text

    Serum potassium and adverse outcomes across the range of kidney function: a CKD Prognosis Consortium meta-analysis

    No full text

    Adiposity and risk of decline in glomerular filtration rate: meta-analysis of individual participant data in a global consortium

    No full text
    OBJECTIVE:To evaluate the associations between adiposity measures (body mass index, waist circumference, and waist-to-height ratio) with decline in glomerular filtration rate (GFR) and with all cause mortality. DESIGN:Individual participant data meta-analysis. SETTING:Cohorts from 40 countries with data collected between 1970 and 2017. PARTICIPANTS:Adults in 39 general population cohorts (n=5 459 014), of which 21 (n=594 496) had data on waist circumference; six cohorts with high cardiovascular risk (n=84 417); and 18 cohorts with chronic kidney disease (n=91 607). MAIN OUTCOME MEASURES:GFR decline (estimated GFR decline ≥40%, initiation of kidney replacement therapy or estimated GFR <10 mL/min/1.73 m2) and all cause mortality. RESULTS:Over a mean follow-up of eight years, 246 607 (5.6%) individuals in the general population cohorts had GFR decline (18 118 (0.4%) end stage kidney disease events) and 782 329 (14.7%) died. Adjusting for age, sex, race, and current smoking, the hazard ratios for GFR decline comparing body mass indices 30, 35, and 40 with body mass index 25 were 1.18 (95% confidence interval 1.09 to 1.27), 1.69 (1.51 to 1.89), and 2.02 (1.80 to 2.27), respectively. Results were similar in all subgroups of estimated GFR. Associations weakened after adjustment for additional comorbidities, with respective hazard ratios of 1.03 (0.95 to 1.11), 1.28 (1.14 to 1.44), and 1.46 (1.28 to 1.67). The association between body mass index and death was J shaped, with the lowest risk at body mass index of 25. In the cohorts with high cardiovascular risk and chronic kidney disease (mean follow-up of six and four years, respectively), risk associations between higher body mass index and GFR decline were weaker than in the general population, and the association between body mass index and death was also J shaped, with the lowest risk between body mass index 25 and 30. In all cohort types, associations between higher waist circumference and higher waist-to-height ratio with GFR decline were similar to that of body mass index; however, increased risk of death was not associated with lower waist circumference or waist-to-height ratio, as was seen with body mass index. CONCLUSIONS:Elevated body mass index, waist circumference, and waist-to-height ratio are independent risk factors for GFR decline and death in individuals who have normal or reduced levels of estimated GFR
    corecore