3,370 research outputs found
Gene specific overwriting of epigenetic signatures to modulate the expression of selected tumor-promoting genes in cancer
Recommended from our members
Reconstruction and measurement of (100) MeV energy electromagnetic activity from π0 arrow γγ decays in the MicroBooNE LArTPC
We present results on the reconstruction of electromagnetic (EM) activity from photons produced in charged current νμ interactions with final state π0s. We employ a fully-automated reconstruction chain capable of identifying EM showers of (100) MeV energy, relying on a combination of traditional reconstruction techniques together with novel machine-learning approaches. These studies demonstrate good energy resolution, and good agreement between data and simulation, relying on the reconstructed invariant π0 mass and other photon distributions for validation. The reconstruction techniques developed are applied to a selection of νμ + Ar → μ + π0 + X candidate events to demonstrate the potential for calorimetric separation of photons from electrons and reconstruction of π0 kinematics
Aquatic plants as potential sources of antimicrobial compounds active against bovine mastitis pathogens
Resistance of pathogens to common veterinary antibiotics hampers mastitis treatment and motivates the discovery of new antimicrobials. In this study, extracts from two aquatic plants, Salvinia auriculata and Hydrocleys nymphoides, were assayed against bovine mastitis pathogens. Selected parts of plants were extracted with different solvents. The extracts showed activity only against the Gram-positive strains tested and the largest inhibition zones were seen for hexane extracts. The minimum inhibitory concentration values ranged from 0.2 to 1.0 mg/ml. Growth of Streptococcus agalactiae in the presence of different extracts with concentrations below MIC reduced the number of CFU/ml by more than 90%. Sub-MIC concentrations of the hexane extracts prepared from roots of S. auriculata inhibited approximately 50% of biofilm formation. Greater reduction was achieved for ethanol extract prepared from leaves of H. nymphoides. We concluded that these aquatic plants are potential sources for the investigation of new antimicrobial compounds.Key words: Staphylococcus aureus, Streptococcus agalactiae, aquatic plants, Salvinia auriculata, Hydrocleys nymphoides, antimicrobial activity
Metabolic effects of diets differing in glycaemic index depend on age and endogenous GIP
Aims/hypothesis
High- vs low-glycaemic index (GI) diets unfavourably affect body fat mass and metabolic markers in rodents. Different effects of these diets could be age-dependent, as well as mediated, in part, by carbohydrate-induced stimulation of glucose-dependent insulinotrophic polypeptide (GIP) signalling.
Methods
Young-adult (16 weeks) and aged (44 weeks) male wild-type (C57BL/6J) and GIP-receptor knockout (Gipr −/− ) mice were exposed to otherwise identical high-carbohydrate diets differing only in GI (20–26 weeks of intervention, n = 8–10 per group). Diet-induced changes in body fat distribution, liver fat, locomotor activity, markers of insulin sensitivity and substrate oxidation were investigated, as well as changes in the gene expression of anorexigenic and orexigenic hypothalamic factors related to food intake.
Results
Body weight significantly increased in young-adult high- vs low-GI fed mice (two-way ANOVA, p < 0.001), regardless of the Gipr genotype. The high-GI diet in young-adult mice also led to significantly increased fat mass and changes in metabolic markers that indicate reduced insulin sensitivity. Even though body fat mass also slightly increased in high- vs low-GI fed aged wild-type mice (p < 0.05), there were no significant changes in body weight and estimated insulin sensitivity in these animals. However, aged Gipr −/− vs wild-type mice on high-GI diet showed significantly lower cumulative net energy intake, increased locomotor activity and improved markers of insulin sensitivity.
Conclusions/interpretation
The metabolic benefits of a low-GI diet appear to be more pronounced in younger animals, regardless of the Gipr genotype. Inactivation of GIP signalling in aged animals on a high-GI diet, however, could be beneficial
CD98hc facilitates B cell proliferation and adaptive humoral immunity.
The proliferation of antigen-specific lymphocytes and resulting clonal expansion are essential for adaptive immunity. We report here that B cell-specific deletion of the heavy chain of CD98 (CD98hc) resulted in lower antibody responses due to total suppression of B cell proliferation and subsequent plasma cell formation. Deletion of CD98hc did not impair early B cell activation but did inhibit later activation of the mitogen-activated protein kinase Erk1/2 and downregulation of the cell cycle inhibitor p27. Reconstitution of CD98hc-deficient B cells with CD98hc mutants showed that the integrin-binding domain of CD98hc was required for B cell proliferation but that the amino acid-transport function of CD98hc was dispensable for this. Thus, CD98hc supports integrin-dependent rapid proliferation of B cells. We propose that the advantage of adaptive immunity favored the appearance of CD98hc in vertebrates
Organism-sediment interactions govern post-hypoxia recovery of ecosystem functioning
Hypoxia represents one of the major causes of biodiversity and ecosystem functioning loss for coastal waters. Since eutrophication-induced hypoxic events are becoming increasingly frequent and intense, understanding the response of ecosystems to hypoxia is of primary importance to understand and predict the stability of ecosystem functioning. Such ecological stability may greatly depend on the recovery patterns of communities and the return time of the system properties associated to these patterns. Here, we have examined how the reassembly of a benthic community contributed to the recovery of ecosystem functioning following experimentally-induced hypoxia in a tidal flat. We demonstrate that organism-sediment interactions that depend on organism size and relate to mobility traits and sediment reworking capacities are generally more important than recovering species richness to set the return time of the measured sediment processes and properties. Specifically, increasing macrofauna bioturbation potential during community reassembly significantly contributed to the recovery of sediment processes and properties such as denitrification, bedload sediment transport, primary production and deep pore water ammonium concentration. Such bioturbation potential was due to the replacement of the small-sized organisms that recolonised at early stages by large-sized bioturbating organisms, which had a disproportionately stronger influence on sediment. This study suggests that the complete recovery of organism-sediment interactions is a necessary condition for ecosystem functioning recovery, and that such process requires long periods after disturbance due to the slow growth of juveniles into adult stages involved in these interactions. Consequently, repeated episodes of disturbance at intervals smaller than the time needed for the system to fully recover organism-sediment interactions may greatly impair the resilience of ecosystem functioning.
TRY plant trait database - enhanced coverage and open access
Plant traits-the morphological, anatomical, physiological, biochemical and phenological characteristics of plants-determine how plants respond to environmental factors, affect other trophic levels, and influence ecosystem properties and their benefits and detriments to people. Plant trait data thus represent the basis for a vast area of research spanning from evolutionary biology, community and functional ecology, to biodiversity conservation, ecosystem and landscape management, restoration, biogeography and earth system modelling. Since its foundation in 2007, the TRY database of plant traits has grown continuously. It now provides unprecedented data coverage under an open access data policy and is the main plant trait database used by the research community worldwide. Increasingly, the TRY database also supports new frontiers of trait-based plant research, including the identification of data gaps and the subsequent mobilization or measurement of new data. To support this development, in this article we evaluate the extent of the trait data compiled in TRY and analyse emerging patterns of data coverage and representativeness. Best species coverage is achieved for categorical traits-almost complete coverage for 'plant growth form'. However, most traits relevant for ecology and vegetation modelling are characterized by continuous intraspecific variation and trait-environmental relationships. These traits have to be measured on individual plants in their respective environment. Despite unprecedented data coverage, we observe a humbling lack of completeness and representativeness of these continuous traits in many aspects. We, therefore, conclude that reducing data gaps and biases in the TRY database remains a key challenge and requires a coordinated approach to data mobilization and trait measurements. This can only be achieved in collaboration with other initiatives
Measurement of the inclusive and dijet cross-sections of b-jets in pp collisions at sqrt(s) = 7 TeV with the ATLAS detector
The inclusive and dijet production cross-sections have been measured for jets
containing b-hadrons (b-jets) in proton-proton collisions at a centre-of-mass
energy of sqrt(s) = 7 TeV, using the ATLAS detector at the LHC. The
measurements use data corresponding to an integrated luminosity of 34 pb^-1.
The b-jets are identified using either a lifetime-based method, where secondary
decay vertices of b-hadrons in jets are reconstructed using information from
the tracking detectors, or a muon-based method where the presence of a muon is
used to identify semileptonic decays of b-hadrons inside jets. The inclusive
b-jet cross-section is measured as a function of transverse momentum in the
range 20 < pT < 400 GeV and rapidity in the range |y| < 2.1. The bbbar-dijet
cross-section is measured as a function of the dijet invariant mass in the
range 110 < m_jj < 760 GeV, the azimuthal angle difference between the two jets
and the angular variable chi in two dijet mass regions. The results are
compared with next-to-leading-order QCD predictions. Good agreement is observed
between the measured cross-sections and the predictions obtained using POWHEG +
Pythia. MC@NLO + Herwig shows good agreement with the measured bbbar-dijet
cross-section. However, it does not reproduce the measured inclusive
cross-section well, particularly for central b-jets with large transverse
momenta.Comment: 10 pages plus author list (21 pages total), 8 figures, 1 table, final
version published in European Physical Journal
Search for direct pair production of the top squark in all-hadronic final states in proton-proton collisions at s√=8 TeV with the ATLAS detector
The results of a search for direct pair production of the scalar partner to the top quark using an integrated luminosity of 20.1fb−1 of proton–proton collision data at √s = 8 TeV recorded with the ATLAS detector at the LHC are reported. The top squark is assumed to decay via t˜→tχ˜01 or t˜→ bχ˜±1 →bW(∗)χ˜01 , where χ˜01 (χ˜±1 ) denotes the lightest neutralino (chargino) in supersymmetric models. The search targets a fully-hadronic final state in events with four or more jets and large missing transverse momentum. No significant excess over the Standard Model background prediction is observed, and exclusion limits are reported in terms of the top squark and neutralino masses and as a function of the branching fraction of t˜ → tχ˜01 . For a branching fraction of 100%, top squark masses in the range 270–645 GeV are excluded for χ˜01 masses below 30 GeV. For a branching fraction of 50% to either t˜ → tχ˜01 or t˜ → bχ˜±1 , and assuming the χ˜±1 mass to be twice the χ˜01 mass, top squark masses in the range 250–550 GeV are excluded for χ˜01 masses below 60 GeV
Observation of associated near-side and away-side long-range correlations in √sNN=5.02 TeV proton-lead collisions with the ATLAS detector
Two-particle correlations in relative azimuthal angle (Δϕ) and pseudorapidity (Δη) are measured in √sNN=5.02 TeV p+Pb collisions using the ATLAS detector at the LHC. The measurements are performed using approximately 1 μb-1 of data as a function of transverse momentum (pT) and the transverse energy (ΣETPb) summed over 3.1<η<4.9 in the direction of the Pb beam. The correlation function, constructed from charged particles, exhibits a long-range (2<|Δη|<5) “near-side” (Δϕ∼0) correlation that grows rapidly with increasing ΣETPb. A long-range “away-side” (Δϕ∼π) correlation, obtained by subtracting the expected contributions from recoiling dijets and other sources estimated using events with small ΣETPb, is found to match the near-side correlation in magnitude, shape (in Δη and Δϕ) and ΣETPb dependence. The resultant Δϕ correlation is approximately symmetric about π/2, and is consistent with a dominant cos2Δϕ modulation for all ΣETPb ranges and particle pT
- …
