3,297 research outputs found

    Influence of Anodizing by Electro-Chemical Oxidation on Fatigue and Wear Resistance of the EV31A-T6 Cast Magnesium Alloy

    Get PDF
    In the last decades, several anodizing processes for Mg alloys have been proposed to achieve a good wear and corrosion resistance combination. In particular, Electro-Chemical Oxidation (ECO) showed an improved dense and compact anodized layer compared to other anodizing processes carried out above the dielectric breakdown voltage, such as Plasma Electrolytic Oxidation (PEO). However, the influence of the ECO treatment on the tribological behavior and cyclic mechanical performance of Mg alloys has not been investigated yet. This paper reports on the influence of ECO on dry sliding behavior (vs. 100Cr6 bearing steel (block-on-ring contact geometry)) and rotating bending fatigue performance of the rare earth (RE)-containing Mg alloy EV31A-T6, comparing it with both untreated EV31A-T6 and PEO-treated EV31A-T6, used as benchmarks. The ECO-treated alloy showed improved tribological behavior (critical load for coating failure one order of magnitude higher and coefficient of friction 40% lower than for PEO) and fatigue strength (no decrease for ECO-treated samples compared to the untreated alloy, while PEO-treated samples induced a 15% decrease) due to the increased compactness and lower defectivity of the anodized layer, induced by the minimization of destructive arc discharges during coating growth. In addition, the ECO treatment significantly improved wear resistance compared to the untreated alloy, avoiding, at the same time, the decrease in fatigue strength, which typically occurs after PEO. Therefore, the ECO process can be applied to improve wear resistance without decreasing the fatigue strength of high-performance components

    Mechanical and microstructural features of wire-and-arc additively manufactured carbon steel thick plates

    Get PDF
    Metal additive manufacturing (AM), in particular wire-and-arc additive manufacturing (WAAM), has become over the last few years the breakthrough technology to reduce the environmental impact and increase the efficiency of steel structures. Although intense research effort has been paid toward the mechanical characterization of WAAM-produced thin walls, little attention has been devoted to the investigation of multi-layered thick parts. These latter would indeed expand the application of WAAM for large-scale constructions requiring thicker cross-sections to withstand high loading conditions. The present work provides a comprehensive experimental investigation of mild steel WAAM thick plates from the fabrication to the mechanical and microstructural characterization. First, the fabrication process is presented in full details. From that, microstructural and mechanical characterization is described and discussed, showing a homogeneous microstructure with little influence on the mechanical response along the wall plate thickness, also considering different specimen orientations with respect to the printing directions. The results confirm good mechanical properties of the printed outcomes, in line with those of structural mild steels manufactured with conventional technologies. Little influence on the response along the thickness is reported, thus proving the required quality of WAAM thick parts for applications in the construction sector

    Comparison of direct and indirect methods to maximise the detection of Babesia caballi and Theileria equi infections in Central Southern Italy

    Get PDF
    : Equine piroplasmosis is a disease of equids, caused by tick-borne apicomplexan protozoan pathogens Babesia caballi and Theileria equi, which, according to the World Organisation for Animal Health (OIE), can be diagnosed by enzyme-linked immunosorbent assay (ELISA), immunofluorescent antibody test (IFAT) and polymerase chain reaction (PCR). The present study was conducted to evaluate and compare the assays available for the diagnosis of equine piroplasmosis. Data employed were obtained from 1300 blood samples collected between 2012-2014 from asymptomatic and symptomatic equines (horses and donkeys) of central-southern regions of Italy and analyzed by ELISA, IFAT, PCR (one commercial and one from literature) and blood smear microscopic examination. Statistical differences of the proportions of positivity for each parasite and group (asymptomatic and symptomatic) among the methods were verified by the z test to identify the most sensitive. The concordance between each pair of methods - for each parasite and within the groups - and trends in detection of suspect samples of four hypothetical diagnostic algorithms using serological and biomolecular assays were evaluated to identify the most suitable laboratory diagnostic workflow. The results of this study highlighted a lower capacity to detect suspect samples of commercial ELISA for B. caballi in all groups when compared to biomolecular methods and IFAT; and of the commercial PCRs in asymptomatic animals, identifying a PCR from literature and IFAT as the best choice for a combined diagnosis. For T. equi, IFAT detected more suspect samples than ELISA, even if the latter showed good performance and some samples were positive only by the ELISA and PCR, indicating that their simultaneous employment is still advantageous. Host-parasite interaction, amino-acid/genetic diversity and differences in detection limits among the assays could be among the reasons in explaining the present results. In view of further studies, ELISA should be used in combination with PCR, that should regularly be included in the laboratory diagnosis to maximise the detection of early infections and support the evaluation of pharmacological treatment

    Intercalibration of the barrel electromagnetic calorimeter of the CMS experiment at start-up

    Get PDF
    Calibration of the relative response of the individual channels of the barrel electromagnetic calorimeter of the CMS detector was accomplished, before installation, with cosmic ray muons and test beams. One fourth of the calorimeter was exposed to a beam of high energy electrons and the relative calibration of the channels, the intercalibration, was found to be reproducible to a precision of about 0.3%. Additionally, data were collected with cosmic rays for the entire ECAL barrel during the commissioning phase. By comparing the intercalibration constants obtained with the electron beam data with those from the cosmic ray data, it is demonstrated that the latter provide an intercalibration precision of 1.5% over most of the barrel ECAL. The best intercalibration precision is expected to come from the analysis of events collected in situ during the LHC operation. Using data collected with both electrons and pion beams, several aspects of the intercalibration procedures based on electrons or neutral pions were investigated

    Evidence for the 125 GeV Higgs boson decaying to a pair of tau leptons

    Get PDF
    Peer reviewe

    Search for massive resonances decaying in to WW,WZ or ZZ bosons in proton-proton collisions at root s=13 TeV

    Get PDF
    Peer reviewe

    Alignment of the CMS muon system with cosmic-ray and beam-halo muons

    Get PDF
    This is the Pre-print version of the Article. The official published version of the Paper can be accessed from the link below - Copyright @ 2010 IOPThe CMS muon system has been aligned using cosmic-ray muons collected in 2008 and beam-halo muons from the 2008 LHC circulating beam tests. After alignment, the resolution of the most sensitive coordinate is 80 microns for the relative positions of superlayers in the same barrel chamber and 270 microns for the relative positions of endcap chambers in the same ring structure. The resolution on the position of the central barrel chambers relative to the tracker is comprised between two extreme estimates, 200 and 700 microns, provided by two complementary studies. With minor modifications, the alignment procedures can be applied using muons from LHC collisions, leading to additional significant improvements.This work is supported by FMSR (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, and FAPESP (Brazil); MES (Bulgaria); CERN; CAS, MoST, and NSFC (China); COLCIENCIAS (Colombia); MSES (Croatia); RPF (Cyprus); Academy of Sciences and NICPB (Estonia); Academy of Finland, ME, and HIP (Finland); CEA and CNRS/IN2P3 (France); BMBF, DFG, and HGF (Germany); GSRT (Greece); OTKA and NKTH (Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); NRF (Korea); LAS (Lithuania); CINVESTAV, CONACYT, SEP, and UASLP-FAI (Mexico); PAEC (Pakistan); SCSR (Poland); FCT (Portugal); JINR(Armenia, Belarus, Georgia, Ukraine, Uzbekistan); MST and MAE (Russia); MSTDS (Serbia); MICINN and CPAN (Spain); Swiss Funding Agencies (Switzerland); NSC (Taipei); TUBITAK and TAEK (Turkey); STFC (United Kingdom); DOE and NSF (USA)

    Alignment of the CMS muon system with cosmic-ray and beam-halo muons

    Get PDF
    This is the Pre-print version of the Article. The official published version of the Paper can be accessed from the link below - Copyright @ 2010 IOPThe CMS muon system has been aligned using cosmic-ray muons collected in 2008 and beam-halo muons from the 2008 LHC circulating beam tests. After alignment, the resolution of the most sensitive coordinate is 80 microns for the relative positions of superlayers in the same barrel chamber and 270 microns for the relative positions of endcap chambers in the same ring structure. The resolution on the position of the central barrel chambers relative to the tracker is comprised between two extreme estimates, 200 and 700 microns, provided by two complementary studies. With minor modifications, the alignment procedures can be applied using muons from LHC collisions, leading to additional significant improvements.This work is supported by FMSR (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, and FAPESP (Brazil); MES (Bulgaria); CERN; CAS, MoST, and NSFC (China); COLCIENCIAS (Colombia); MSES (Croatia); RPF (Cyprus); Academy of Sciences and NICPB (Estonia); Academy of Finland, ME, and HIP (Finland); CEA and CNRS/IN2P3 (France); BMBF, DFG, and HGF (Germany); GSRT (Greece); OTKA and NKTH (Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); NRF (Korea); LAS (Lithuania); CINVESTAV, CONACYT, SEP, and UASLP-FAI (Mexico); PAEC (Pakistan); SCSR (Poland); FCT (Portugal); JINR(Armenia, Belarus, Georgia, Ukraine, Uzbekistan); MST and MAE (Russia); MSTDS (Serbia); MICINN and CPAN (Spain); Swiss Funding Agencies (Switzerland); NSC (Taipei); TUBITAK and TAEK (Turkey); STFC (United Kingdom); DOE and NSF (USA)

    Description and performance of track and primary-vertex reconstruction with the CMS tracker

    Get PDF
    A description is provided of the software algorithms developed for the CMS tracker both for reconstructing charged-particle trajectories in proton-proton interactions and for using the resulting tracks to estimate the positions of the LHC luminous region and individual primary-interaction vertices. Despite the very hostile environment at the LHC, the performance obtained with these algorithms is found to be excellent. For tbar t events under typical 2011 pileup conditions, the average track-reconstruction efficiency for promptly-produced charged particles with transverse momenta of pT > 0.9GeV is 94% for pseudorapidities of |η| < 0.9 and 85% for 0.9 < |η| < 2.5. The inefficiency is caused mainly by hadrons that undergo nuclear interactions in the tracker material. For isolated muons, the corresponding efficiencies are essentially 100%. For isolated muons of pT = 100GeV emitted at |η| < 1.4, the resolutions are approximately 2.8% in pT, and respectively, 10μm and 30μm in the transverse and longitudinal impact parameters. The position resolution achieved for reconstructed primary vertices that correspond to interesting pp collisions is 10–12μm in each of the three spatial dimensions. The tracking and vertexing software is fast and flexible, and easily adaptable to other functions, such as fast tracking for the trigger, or dedicated tracking for electrons that takes into account bremsstrahlung
    corecore