7 research outputs found

    Transgenerational effects in asexually reproduced offspring of Populus

    Get PDF
    The response of trees to a changing climate can be affected by transgenerational phenotypic plasticity, i.e. phenotypic variation that is conserved and transferred to the offspring. Transgenerational plasticity that is influenced by epigenetics (heritable changes in gene function that do not result from changes in DNA sequence) during both sexual and asexual reproduction are of major relevance for adaptation of plants to climate change. To understand the transgenerational effects on the responses of vegetatively propagated poplar (Populus deltoides and P. trichocarpa) ramets (cuttings) to a changing environment, we tested whether the temperature and photoperiod experienced by the mother trees (genets) persistently affects the phenology of the cuttings grown in a common environment. We weekly monitored the bud phenology of the cuttings collected from the parent trees that have been growing across Europe along a >2100 km latitudinal gradient for at least 18 years. In addition, we asked whether there was variation in DNA methylation as measured by Methylation Sensitive Amplified Fragment Length Polymorphism (MSAPs) in the clones due to the different environmental conditions experienced by the parent trees. Our results indicate a transgenerational effect on bud phenology in the asexually reproduced offspring (vegetative cuttings). The temperatures experienced by the parent tree clones (from different geographic regions) altered the bud flush of the cuttings in the common garden. However, no significant epigenetic variation was detected in the cuttings of the parent trees within single genotypes growing under different climates. In sum, our results show that trees have the potential to respond to rapid climate change but the mechanism behind these changes needs to be further investigated by more powerful molecular methods like whole-genome bisulphite sequencing techniques

    Effects of maternal temperature on offspring performance of temperate forest trees

    No full text

    Maternal temperature during seed maturation affects seed germination and timing of bud set in seedlings of European black poplar

    No full text
    The maternal temperature during seed development can significantly affect seed dormancy, germination and seedling performance. While the response of germination and seedling phenology to maternal temperatures has been well studied for annuals and conifers, very few studies focus on deciduous trees. To understand the responses of seedlings to variation in maternal temperature during seed maturation, we assessed the germination, bud phenology (bud burst, bud set) and height of full sib families in a common garden. We performed three controlled crosses between three different pairs of genotypes of European black poplar (Populus nigra) to achieve full sib families in three experiments in warm (+ 10 degrees C) and cold (control) maternal environments during crossing and seed maturation. Warmer (+ 10 degrees C) maternal temperatures decreased the seed germination success. The seedlings from the warmer maternal environment also displayed later bud burst and earlier bud set, but only in one out of the three crossings (Proven female x Horrues male). Our results indicate that the maternal environment can considerably impact on seed germination and the phenological responses of even two-year old seedlings suggesting the existence of a memory of maternal temperature during seed maturation. The seedlings resulting from the colder maternal environment grew taller than those from the warmer environment during the first, but not second, growing season. Our results further our understanding of the responses of deciduous forest trees to rapid climate change, but more research is needed to better understand the mechanisms behind the observed effects of maternal warming

    Weak but persistent provenance effects modulate the response of Quercus robur (Fagaceae) seedlings to elevated temperature

    No full text
    Background and aims: Clinal variation in bud phenology and growth has repeatedly been reported in common garden experiments for many tree species. The response of the seedlings generated from such translocated trees has not been studied yet, despite its relevance regarding the role of transgenerational plasticity in the adaptation of long-living trees in the face of climate change. Here, we aim to understand the effects of warming on bud burst, germination success and growth performance of tree seedlings of different origins (provenances) but that shared their maternal environment. Methods: We collected seeds from a mature provenance trial of five different provenances of oak (Quercus robur, Fagaceae) and seeds were grown in two common gardens at two different latitudes representing a mean annual temperature difference of nearly 2°C in Belgium and Denmark. We assessed seed germination, bud burst time and biomass of seedlings in two common gardens. Results: We observed an interaction between provenances and common gardens in seedlings’ bud burst time indicating the prevalence of an environmental effect at the site of origin (provenance), which depends on the seedlings’ growing environment (across the two common gardens). The germination success and shoot biomass were reduced across all provenances in the southern common garden. Conclusions: Our results indicate that the environment of origin influences the bud phenology of seedlings and this provenance effect is dependent on the seedlings’ growing environment. In addition, our results suggest that the effect of warming might differ between provenances and that the environmental history of the previous generations is likely to influence the response of tree seedlings as well

    FORBIO Climate: Adaptation potential of biodiverse forests in the face of climate change

    Full text link
    On s’attend Ă  ce que le changement climatique affecte considĂ©rablement la distribution, la composition et le fonctionnement des Ă©cosystĂšmes forestiers dans le monde en raison de la capacitĂ© de migration et d’adaptation limitĂ©e des arbres. La constitution de forĂȘts rĂ©sistantes et rĂ©silientes reprĂ©sente donc un enjeu majeur pour la gestion forestiĂšre. Il a Ă©tĂ© suggĂ©rĂ© que des mĂ©canismes Ă©pigĂ©nĂ©tiques pouvaient augmenter la capacitĂ© des arbres Ă  survivre dans un environnement changeant, mais la magnitude et l’importance de ces mĂ©canismes pour les semis et fourrĂ©s demeurent encore inconnus. La recherche a Ă©galement montrĂ© que des Ă©cosystĂšmes plus diversifiĂ©s Ă©taient mieux tamponnĂ©s face aux perturbations. Ces Ă©tudes furent toutefois majoritairement conduites en prairies. Il est donc essentiel d’approfondir notre comprĂ©hension de la capacitĂ© adaptative des arbres et des forĂȘts Ă  leurs diffĂ©rents stades de dĂ©veloppement, et du rĂŽle exercĂ© par le mĂ©lange d’espĂšces dans l’attĂ©nuation du changement climatique. FORBIO Climate entendait examiner la capacitĂ© adaptative d’espĂšces ligneuses ciblĂ©es et prĂ©dire le comportement futur de ces espĂšces en Belgique, dans un climat changeant. Le projet a portĂ© sur le chĂȘne (Quercus robur/petraea) et le hĂȘtre (Fagus sylvatica), deux espĂšces ligneuses de grande importance Ă©cologique et Ă©conomique en Belgique (et en Europe). FORBIO Climate s’est appuyĂ© sur plusieurs infrastructures de recherche en Belgique et Ă  l’étranger (p. ex. le site expĂ©rimental FORBIO de Zedelgem, la Plate-forme belge d’observation de la biodiversitĂ©, le dispositif expĂ©rimental ORPHEE en France, des plantations de type ‘common garden’ en Belgique et au Danemark) pour tester les hypothĂšses suivantes : (1) les mĂ©canismes Ă©pigĂ©nĂ©tiques de transmission peuvent accroĂźtre la capacitĂ© adaptative des arbres face au changement climatique durant le stade de reproduction ; (2) aux diffĂ©rents stades de dĂ©veloppement successifs, les arbres sont plus rĂ©sistants et plus rĂ©silients au changement climatique en forĂȘts plus diversifiĂ©es. Le projet Ă©tait structurĂ© en cinq modules. Le module 1 a fourni des donnĂ©es climatiques passĂ©es qui ont Ă©tĂ© mises en relation avec les mesures effectuĂ©es sur les semis, les fourrĂ©s et les arbres matures des modules 2-4 afin d’apprĂ©hender l’impact des variations du climat sur le fonctionnement des arbres. Le module 1 a Ă©galement fourni des simulations Ă  haute rĂ©solution du climat futur. Dans le cadre du module 5, les rĂ©ponses Ă  la sĂ©cheresse et Ă  la diversitĂ© spĂ©cifique ont Ă©tĂ© extrapolĂ©es Ă  l’échelle nationale, et les parties prenantes ont Ă©tĂ© sondĂ©es quant Ă  leur perception du changement climatique et aux mesures d’adaptation. Le module 1 a fourni des donnĂ©es climatiques passĂ©es et futures Ă  partir de stations mĂ©tĂ©orologiques et de modĂšles climatiques rĂ©gionaux Ă  haute rĂ©solution, respectivement. Les donnĂ©es d’observation issues du rĂ©seau climatologique belge durant la pĂ©riode 1980-2016 ont d’abord Ă©tĂ© soumises Ă  des tests de contrĂŽle de qualitĂ©. Le krigeage utilisant la topographie comme variable auxiliaire et le krigeage ordinaire ont Ă©tĂ© ensuite utilisĂ©s pour interpoler les donnĂ©es journaliĂšres observĂ©es de tempĂ©rature et de prĂ©cipitation sur une grille de 4×4 km de rĂ©solution couvrant toute la Belgique ; ceci a permis d’obtenir le jeu de donnĂ©es climatiques d’observation final. Pour les simulations du climat, le modĂšle climatique rĂ©gional ALARO-0 a Ă©tĂ© utilisĂ© en s’appuyant sur une approche de ‘downscaling’ oĂč l’atmosphĂšre et la surface terrestre ont Ă©tĂ© modĂ©lisĂ©es de maniĂšre continue. Le modĂšle a d’abord Ă©tĂ© validĂ© pour les conditions climatiques actuelles (1980-2010) par un downscaling dynamique d’un jeu de donnĂ©es Ă  4 × 4 km de rĂ©solution issu d’un modĂšle climatique global. Pour la simulation historique (1976-2005), une valeur constante de CO2 a Ă©tĂ© utilisĂ©e ; pour les simulations portant sur le futur (2007-2100), des scĂ©narios RCP (Representative Concentration Pathways) 2.6, 4.5 et 8.5 ont Ă©tĂ© implĂ©mentĂ©s, qui dĂ©crivent le forçage radiatif rĂ©sultant des gaz Ă  effet de serre, c-Ă -d la diffĂ©rence entre l’énergie radiative absorbĂ©e par la terre et l’énergie rĂ©-Ă©mise vers l’espace. Le changement climatique a ensuite Ă©tĂ© calculĂ© par diffĂ©rence entre les simulations historique et RCP. Les prĂ©dictions du modĂšle ont montrĂ© une augmentation consistante de la tempĂ©rature de 0,3 to 4,2 °C, selon le scenario RCP, avec un rĂ©chauffement plus important dans les Ardennes comparativement au reste du pays. Les prĂ©cipitations annuelles moyennes ont montrĂ© une lĂ©gĂšre augmentation vers la fin du siĂšcle, en raison d’épisodes de prĂ©cipitations plus extrĂȘmes, principalement en hiver et en automne. La vitesse du vent n’a pas changĂ© de maniĂšre claire, tandis que l’humiditĂ© relative montrait une rĂ©duction faible mais consistante Ă  la fin du siĂšcle. L’objectif du module 2 Ă©tait de quantifier les effets Ă©pigĂ©nĂ©tiques de la tempĂ©rature parentale sur la performance des semis, en utilisant diffĂ©rents dispositifs de chauffage (sol, branche, transplantation en dispositifs de type ‘common garden’). La tempĂ©rature parentale influençait le succĂšs de germination, la phĂ©nologie du dĂ©bourrement et la croissance des semis, et cet effet dĂ©pendait des conditions environnementales auxquelles la descendance Ă©tait soumise. Par consĂ©quent, il est nĂ©cessaire de considĂ©rer le cycle de vie et les conditions environnementales des parents pour prĂ©dire la rĂ©ponse des arbres au changement climatique. Nous avons aussi considĂ©rĂ© la mĂ©thylation du DNA comme un mĂ©canisme Ă©pigĂ©nĂ©tique potentiel pour des effets trans-gĂ©nĂ©rationnels (dans ce cas, le changement phĂ©nologique liĂ© Ă  l’environnement parental). Nous avons utilisĂ© la mĂ©thode Methylation Sensitive Amplified Fragment Length Polymorphism (MSAP) pour examiner la variation naturelle des patrons de mĂ©thylation du DNA au sein de plantes individuelles d’un mĂȘme clĂŽne de peuplier hybride. Toutefois, nous n’avons pas pu confirmer le rĂŽle de la mĂ©thylation dans les changements phĂ©nologiques liĂ©s Ă  la tempĂ©rature parentale. Des investigations Ă  l’aide de techniques molĂ©culaires plus puissantes comme le sĂ©quençage du gĂ©nĂŽme complet (whole-genome bisulphite sequencing) s’avĂ©reraient nĂ©cessaires. Le module 3 a quantifiĂ© l’impact de la diversitĂ© ligneuse et de la composition spĂ©cifique sur la performance de jeunes plants de chĂȘnes et de hĂȘtres, et sur l’attĂ©nuation du stress liĂ© Ă  une sĂ©cheresse. A cette fin, un dispositif d’exclusion des pluies a Ă©tĂ© installĂ© dans le site FORBIO de Zedelgem, en examinant l’impact sur la croissance et la vitalitĂ© des plants, sur des variables abiotiques du sol, sur les microorganismes du sol et sur la transformation de la matiĂšre organique du sol. En dĂ©finitive, une rĂ©duction des prĂ©cipitations de 50% sur 2 ans n’a pas affectĂ© la croissance des arbres mais a influencĂ© les processus biogĂ©ochimiques du sol, ce qui pourrait affecter Ă  long terme la disponibilitĂ© en nutriments des arbres. Plusieurs processus du sol et la composition microbienne ont aussi Ă©tĂ© affectĂ©s par le mĂ©lange d’espĂšces. Ceci indique que, dans les jeunes peuplements, les processus souterrains pourraient ĂȘtre plus sensibles Ă  la sĂ©cheresse et Ă  la diversitĂ© ligneuse que les processus aĂ©riens. L’association d’autres espĂšces avec le chĂȘne et le hĂȘtre a provoquĂ© certains effets stabilisants contre la sĂ©cheresse. Le module 4 a examinĂ© la performance de chĂȘnes et de hĂȘtres matures dans des conditions de stress hydriques, et quantifiĂ© la contribution du mĂ©lange en terme d’attĂ©nuation des effets nĂ©gatifs du climat sur la croissance d’arbres adultes. Nous avons sĂ©lectionnĂ© des triplets constituĂ©s de chĂȘne et/ou de hĂȘtre, et sondĂ© les arbres dominants pour mesurer la croissance radiale. La croissance radiale a Ă©tĂ© utilisĂ©e pour tester l’impact du mĂ©lange sur la croissance individuelle, et plus spĂ©cifiquement, sur la rĂ©ponse Ă  des stress comme la sĂ©cheresse. Sur un sous-ensemble de carottes, les cernes formĂ©s en 2001 (avec un Ă©tĂ© normal) et 2003 (avec un Ă©tĂ© trĂšs sec) ont Ă©tĂ© analysĂ©s pour leur teneur en 12C et 13C; le ÎŽ^13 C, qui est une mesure de l’exposition des arbres Ă  la sĂ©cheresse, a ainsi pu ĂȘtre calculĂ©. Des mesures dendromĂ©triques ont Ă©tĂ© effectuĂ©es autour des arbres sondĂ©s pour caractĂ©riser le voisinage en termes de compĂ©tition et de composition spĂ©cifique. Dans les peuplements mĂ©langĂ©s de chĂȘne et de hĂȘtre, le hĂȘtre croissait plus rapidement comparativement aux monocultures correspondantes. Cependant, un inconvĂ©nient d’une croissance rapide est une consommation d’eau accrue, qui peut provoquer une dessication plus rapide du sol. De fait, nous avons montrĂ© que le mĂ©lange est bĂ©nĂ©fique pour la croissance des hĂȘtres lors d’annĂ©es Ă  faible croissance, quelles qu’en soient les causes (sĂ©cheresse ou autres facteurs environnementaux). Par consĂ©quent, l’effet global du mĂ©lange d’espĂšces sur la productivitĂ© du hĂȘtre en mĂ©lange reste positif. Le chĂȘne, de son cĂŽtĂ©, croissait gĂ©nĂ©ralement plus lentement en mĂ©lange avec le hĂȘtre, parce que le hĂȘtre est plus compĂ©titif. Cependant, ce dĂ©savantage pour le chĂȘne devenait plus faible en conditions plus dĂ©favorables, et pouvait mĂȘme s’inverser, par exemple sur des sites secs ; dans ces cas, la croissance du chĂȘne bĂ©nĂ©ficie d’un mĂ©lange avec le hĂȘtre. Ceci signifie Ă©galement que lorsque les conditions deviennent plus dĂ©favorables, la croissance du chĂȘne sera moins affectĂ©e en mĂ©lange qu’en monoculture. Dans ce contexte, le mĂ©lange peut ĂȘtre considĂ©rĂ© comme une mesure de sĂ©curitĂ© Ă  la fois pour le chĂȘne et pour le hĂȘtre. Un point fort de ce module est aussi l’établissement d’un rĂ©seau de 8 triplets Ă  base de chĂȘne et de hĂȘtre, et l’obtention d’un jeu de donnĂ©es inĂ©dit portant sur la croissance radiale et le voisinage. En fait, ces sites servent dĂ©jĂ  pour des prĂ©lĂšvements de sols dans le cadre d’autres projets de recherche sur le mĂ©lange. Le module 5 est intervenu Ă  un niveau plus intĂ©grĂ© en termes d’échelles spatiale et temporelle, et de stades de dĂ©veloppement forestier, sur le rĂŽle de la diversitĂ© des arbres dans un contexte de changement climatique. Dans une premiĂšre Ă©tape, les effets du changement climatique sur la dynamique des peuplements de hĂȘtre et de chĂȘne Ă  l’échelle nationale ont Ă©tĂ© investiguĂ©s. Des donnĂ©es du rĂ©seau ICP Forests, des inventaires forestiers rĂ©gionaux de Flandre et de Wallonie, la carte numĂ©rique des sols de Belgique, le jeu de donnĂ©es climatiques du module 1 et un modĂšle digital de terrain ont Ă©tĂ© utilisĂ©s pour apprĂ©hender la croissance et l’état sanitaire des arbres; en particulier, elles ont permis d’examiner si la rĂ©silience Ă  la sĂ©cheresse Ă©tait liĂ©e Ă  une augmentation de la diversitĂ© ligneuse, et si des peuplements mĂ©langĂ©s pouvaient avoir une croissance supĂ©rieure aux peuplements purs. La dĂ©foliation du hĂȘtre et du chĂȘne a augmentĂ© sensiblement depuis les annĂ©es 1990. En considĂ©rant les rĂ©ponses Ă  long terme Ă  des changements de tempĂ©rature et de prĂ©cipitation, la sĂ©vĂ©ritĂ© de la dĂ©foliation Ă©tait plus faible Ă  des niveaux plus Ă©levĂ©s de diversitĂ© ligneuse. Le passage d’un effet nĂ©gatif Ă  un effet positif de la richesse spĂ©cifique sur l’état sanitaire, sous l’effet d’une augmentation du stress hydrique, n’avait jamais Ă©tĂ© reportĂ© pour des Ă©cosystĂšmes en dehors de conditions expĂ©rimentales. La sĂ©cheresse causa Ă©galement une rĂ©duction marquĂ©e de la croissance des arbres feuillus, en particulier le hĂȘtre, mĂȘme si nous avons observĂ© que les arbres croissant en mĂ©lange Ă©taient plus rĂ©silients Ă  la sĂ©cheresse que ceux croissant en monoculture. En second lieu, un questionnaire a Ă©tĂ© rĂ©alisĂ© pour documenter la perception des propriĂ©taires et gestionnaires forestiers quant Ă  la vulnĂ©rabilitĂ© des forĂȘts au changement climatique et Ă  la mise en oeuvre d’actions spĂ©cifiques pour augmenter la rĂ©silience des forĂȘts. Nous avons trouvĂ© qu’il y avait un net dĂ©sĂ©quilibre entre la connaissance des impacts des changements climatiques et les pratiques d’adaptation effectivement mises en place par les gestionnaires forestiers, probablement en raison d’un manque d’information locale pertinente et pratique. TroisiĂšmement, une revue systĂ©matique de la littĂ©rature publiĂ©e sur les effets de la diversitĂ© ligneuse dans un contexte de changements climatiques est toujours en cours. Nos rĂ©sultats dĂ©montrent que la gestion des chĂȘnaies et des hĂȘtraies pour maintenir ou accroĂźtre la diversitĂ© taxonomique, fonctionnelle et/ou gĂ©nĂ©tique contribue Ă  attĂ©nuer la vulnĂ©rabilitĂ© de ces forĂȘts Ă  la sĂ©cheresse dans des conditions climatiques changeantes. Des peuplements mĂ©langĂ©s garantissent aux gestionnaires davantage d’options pour le dĂ©veloppement futur du peuplement, puisqu’ils diminuent la vulnĂ©rabilitĂ© Ă  laquelle les monocultures sont soumises au vu des changements climatiques futurs. Le suivi harmonisĂ© Ă  long terme de la vitalitĂ© des forĂȘts est une mĂ©thode efficace pour dĂ©tecter les changements de l’état sanitaire et de la productivitĂ© induits par le changement climatique et la diversitĂ© ligneuse. L’augmentation continue de la qualitĂ© des donnĂ©es s’est avĂ©rĂ© payant, et cet effort de monitoring mĂ©rite donc d’ĂȘtre poursuivi dans le temps. Des recherches ultĂ©rieures pourraient cibler une gamme plus large d’espĂšces et des changements climatiques multiples dans diffĂ©rents Ă©cosystĂšmes pour mieux prĂ©dire la rĂ©ponse des arbres au changement climatique.Climate change is expected to have a large impact on the distribution, composition and functioning of forest ecosystems worldwide due to the limited migration and adaptation potential of trees. Creating resistant and resilient forests is thus a key challenge for forest management. It has been suggested that epigenetic mechanisms may increase the capacity of trees to survive in a changing environment, but the extent and importance of these mechanisms in seedlings and saplings are still unknown. Research has also shown that more biodiverse ecosystems are better buffered against disturbances. Yet, these studies were predominantly performed in grasslands. More insight into the adaptive capacity of trees and forests in their consecutive life and development stages, respectively, and the potential buffering effect of tree species admixing to climate change is thus urgently needed. FORBIO Climate aimed at scrutinizing the adaptive capacity of particular tree species and predicting the future performance of these tree species under climate change in Belgium. The project focused on oak (Quercus robur/petraea) and beech (Fagus sylvatica), two tree species with high ecological and economic significance in Belgium (and Europe). FORBIO Climate capitalized upon multiple research infrastructures in Belgium and abroad (e.g. the FORBIO site in Zedelgem, the Belgian Observational Biodiversity Platform, the ORPHEE experiment in France, common gardens in Belgium and Denmark) to test the following hypotheses: (1) epigenetic inheritance mechanisms can increase the adaptive capacity of trees to climate change during the reproduction stage; (2) across subsequent tree development stages, tree performance is more resistant and resilient to climate change in more biodiverse forests. The project was structured in five work packages (WPs). In short, WP1 provided past climate data that were linked to the measurements on seedlings, saplings and mature trees in WP2-4 to assess the effects of climate variation on tree performance. WP1 also provided simulations of the future climate. In WP5, drought and diversity responses were scaled up to a national level and stakeholders were inquired about their perception of climate change effects and adaptation. In more detail, WP1 provided past and future climate data from selected weather stations and high-resolution Regional Climate models, respectively. Observational data from the Belgian climatological network for the period 1980-2016 were first subjected to quality control tests. Kriging using the topography as drift, and ordinary kriging were then used to interpolate the observational data on daily temperature and precipitation, respectively, on a regular 4x4 km grid over Belgium, resulting in the observational climate dataset. For the climate simulations, the Regional Climate Model ALARO-0 was used with a downscaling approach where atmosphere and land surface were modelled in a continuous way. First, the model was validated for the present climate conditions (1980-2010) by dynamical downscaling of a global climate model dataset at 4x4 km resolution. For the historical simulation (1976-2005), a constant value for the CO2-equivalent was used; for the future simulation (2007-2100), the so-called Representative Concentration Pathways (RCP 2.6, 4.5 and 8.5) were implemented, which describe the radiative forcing from greenhouse gasses, i.e. the difference between insolation (sunlight) absorbed by the Earth and the energy radiated back to space. Climate change was then calculated as the difference between the historical and the RCP simulations. The model predictions indicated a consistent T increase of 0.3 to 4.2 °C, dependent on the RCP scenario, with a larger warming for the Ardennes compared to the rest of the country. Mean annual precipitation showed a slight increase by the end of the century due to more extreme precipitation events, especially in winter and autumn. Wind speed did not change in a clear way while relative humidity showed an indistinct but consistent decrease towards the end of the century. The aim of WP2 was to quantify the epigenetic effects of parental temperature on seedling performance, using various warming treatments (soil warming, branch warming, translocation to common gardens). Parental temperature influenced the germination success, bud phenology and growth of the seedlings and this effect depended on the environmental conditions in the offspring generation. Hence, there is a need to consider the life history and parental environmental conditions to predict the response of trees to climate change. We also investigated DNA methylation as a potential epigenetic mechanism for transgenerational effects. We used Methylation Sensitive Amplified Fragment Length Polymorphism (MSAP) analysis to examine the natural variation in genome-wide DNA methylation patterns within individuals plants of a single poplar hybrid clone (genotype). However, we could not confirm that methylation helps to explain the phenological changes mediated by the parental temperature. Further investigation is necessary using more powerful molecular methods like whole-genome bisulphite sequencing techniques. WP3 quantified the impact of tree diversity and composition on the overall performance of oak and beech saplings and on the mitigation of drought stress. For this purpose, a drought experiment using rainout shelters was installed on the FORBIO-site in Zedelgem, examining the impact on sapling growth and vitality, abiotic soil variables, soil microorganisms and soil organic matter transformation. Overall, a 2-year 50% precipitation reduction did not affect tree growth but influenced soil biogeochemical processes, which could alter nutrient availability for trees in the long term. Several soil processes and microbial composition were affected by tree species admixing. This indicates that, in young forest stands, belowground processes might be more sensitive to drought and tree diversity than aboveground processes. Tree species admixing to oak and beech showed some degree of stabilizing effects against drought. WP4 examined the performance of mature oak and beech trees under drought stress and quantified the contribution of tree diversity to the mitigation of adverse climate effects on mature tree growth. We selected triplets of oak and beech and cored dominant trees to measure the ring widths. Tree ring measurements were used to test whether mixing had an impact on individual tree growth, more specifically on the sensitivity of growth to stresses like drought. On a subset of the cores, the rings of 2001, with a normal summer, and 2003, with a very dry summer, were analyzed for 12C and 13C content, from which ÎŽ^13 C was calculated, which is a measure for the extent to which the drought was experienced by the tree. Dendrometric measurements on the surrounding trees were used to characterize the neighbourhood of the trees in terms of competition and species composition. In mixed oak-beech stands, beech grew faster compared to its monocultures. However, a drawback of fast growth is the need for more water, which might cause them drying out the soil quicker. Yet, we have shown that mixing is de facto beneficial for the growth of beech trees in tough years (i.e., years of slow growth), regardless of whether this is caused by droughts or other environmental factors. Thus, the overall effect of tree diversity on the productivity of mixed beech stands remains positive. Oak, on the other hand, generally grew more slowly when mixed with beech, because beech is a better competitor. However, this disadvantage for oak became smaller in harsher conditions, and may even be reversed, for example on dry sites. In these cases, oak growth actually benefits from growing in a mixture with beech. This also means that, when conditions harshen, oak growth will be less affected in mixtures than in monocultures. In this sense, mixing can be seen as a safety measure for both oak and beech. An important output of this work package is the establishment of a network of eight oak-beech triplets, together with a collection of data on tree growth and neighbourhood. In fact, the sites already serve as soil sampling sites for other research on species mixing in forests. WP5 acted on a more integrated level in terms of time, space and forest development stage, on the role of tree diversity in a context of climate change. In a first step, nation-wide effects of

    Brain-be ''Forbio climate'' Adaptation potential of biodiverse forests in the face of climate change.

    No full text
    Context Climate change is expected to have a large impact on the distribution, composition and functioning of forest ecosystems worldwide as trees have only little opportunities to migrate and adaptation via natural selection happens very slowly. Hence, creating resistant and resilient forests is a key challenge for forest management. More insight into the adaptive capacity of trees and forests in their consecutive life and development stages, respectively, and the potential buffering effect of tree species admixing to climate change is thus urgently needed. Objectives FORBIO Climate aimed at scrutinizing the adaptive capacity of pedunculate and sessile oak (Quercus robur and Q. petraea, respectively) and European beech (Fagus sylvatica) and at predicting the future performance of these tree species in Belgium under climate change. More specifically, the project aimed at testing the following hypotheses: (1) epigenetic inheritance mechanisms can increase the adaptive capacity of trees to climate change during the reproduction stage; (2) across subsequent tree development stages, tree performance is more resistant and resilient to climate change in more biodiverse forests. Conclusions Belgian’s future climate is projected to be warmer, with a higher frequency of extreme precipitation events. Parental temperature influenced the germination success, bud phenology and growth of oak and beech seedlings, but we did not observe DNA methylation that could help to explain the phenological change mediated by the parental temperature. Studies on both saplings and mature trees suggested that drought may influence ecosystem processes in young and mature forests, affecting the growth and vitality of trees. Despite the high awareness of climate change as an issue in forest management and the need to adjust management practices, we found a lack of knowledge on how to adapt forest management in order to mitigate the vulnerability of forests under changing climate conditions. The results of this project confirm that admixing tree species in oak and beech stands is a good adaptation measure across all forest development stages

    Ethnomedicinal plants used to treat skin diseases by Tharu community of district Udham Singh Nagar, Uttarakhand, India

    No full text
    corecore