72 research outputs found

    The Dynamics of Poor Systems of Galaxies

    Get PDF
    We assemble and observe a sample of poor galaxy systems that is suitable for testing N-body simulations of hierarchical clustering (Navarro, Frenk, & White 1997; NFW) and other dynamical halo models (e.g., Hernquist 1990). We (1) determine the parameters of the density profile rho(r) and the velocity dispersion profile sigma(R), (2) separate emission-line galaxies from absorption-line galaxies, examining the model parameters and as a function of spectroscopic type, and (3) for the best-behaved subsample, constrain the velocity anisotropy parameter, beta, which determines the shapes of the galaxy orbits. The NFW universal profile and the Hernquist (1990) model both provide good descriptions of the spatial data. In most cases an isothermal sphere is ruled out. Systems with declining sigma(R) are well-matched by theoretical profiles in which the star-forming galaxies have predominantly radial orbits (beta > 0); many of these galaxies are probably falling in for the first time. There is significant evidence for spatial segregation of the spectroscopic classes regardless of sigma(R).Comment: 36 pages, 20 figures, and 5 tables. To appear in the Astrophysical Journa

    Asymptotics for the number of eigenvalues of three-particle Schr\"{o}dinger operators on lattices

    Full text link
    We consider the Hamiltonian of a system of three quantum mechanical particles (two identical fermions and boson)on the three-dimensional lattice Z3\Z^3 and interacting by means of zero-range attractive potentials. We describe the location and structure of the essential spectrum of the three-particle discrete Schr\"{o}dinger operator Hγ(K),H_{\gamma}(K), KK being the total quasi-momentum and γ>0\gamma>0 the ratio of the mass of fermion and boson. We choose for γ>0\gamma>0 the interaction v(γ)v(\gamma) in such a way the system consisting of one fermion and one boson has a zero energy resonance. We prove for any γ>0\gamma> 0 the existence infinitely many eigenvalues of the operator Hγ(0).H_{\gamma}(0). We establish for the number N(0,γ;z;)N(0,\gamma; z;) of eigenvalues lying below z<0z<0 the following asymptotics limz0N(0,γ;z)logz=U(γ). \lim_{z\to 0-}\frac{N(0,\gamma;z)}{\mid \log \mid z\mid \mid}={U} (\gamma) . Moreover, for all nonzero values of the quasi-momentum KT3K \in T^3 we establish the finiteness of the number N(K,γ;τess(K)) N(K,\gamma;\tau_{ess}(K)) of eigenvalues of H(K)H(K) below the bottom of the essential spectrum and we give an asymptotics for the number N(K,γ;0)N(K,\gamma;0) of eigenvalues below zero.Comment: 25 page

    UV Circular Polarisation in Star Formation Regions : The Origin of Homochirality?

    Get PDF
    Ultraviolet circularly polarised light has been suggested as the initial cause of the homochirality of organic molecules in terrestrial organisms, via enantiomeric selection of prebiotic molecules by asymmetric photolysis. We present a theoretical investigation of mechanisms by which ultraviolet circular polarisation may be produced in star formation regions. In the scenarios considered here, light scattering produces only a small percentage of net circular polarisation at any point in space, due to the forward throwing nature of the phase function in the ultraviolet. By contrast, dichroic extinction can produce a fairly high percentage of net circular polarisation (∼10%) and may therefore play a key role in producing an enantiomeric excessPeer reviewe

    Equivariant Gauge Fixing of SU(2) Lattice Gauge Theory

    Get PDF
    I construct a Lattice Gauge Theory (LGT) with discrete Z_2 structure group and an equivariant BRST symmetry that is physically equivalent to the standard SU(2)-LGT. The measure of this Z_2-LGT is invariant under all the discrete symmetries of the lattice and its partition function does not vanish. The Topological Lattice Theories (TLT) that localize on the moduli spaces are explicitly constructed and their BRST symmetry is exhibited. The ghosts of the Z_2-invariant local LGT are integrated in favor of a nonlocal bosonic measure. In addition to the SU(2) link variables and the coupling g^2, this effective bosonic measure also depends on an auxiliary gauge invariant site variable of canonical dimension two and on a gauge parameter \alpha. The relation between the expectation value of the auxiliary field, the gauge parameter \alpha and the lattice spacing aa is obtained to lowest order in the loop expansion. In four dimensions and the critical limit this expectation value is a physical scale proportional to \Lambda_L in the gauge \alpha=g^2 (11-n_f)/24+ O(g^4). Implications for the loop expansion of observables in such a critical gauge are discussed.Comment: 46 pages, Latex, updated and shortened version to appear in Phys.Rev.

    The Fourteenth Data Release of the Sloan Digital Sky Survey: First Spectroscopic Data from the extended Baryon Oscillation Spectroscopic Survey and from the second phase of the Apache Point Observatory Galactic Evolution Experiment

    Get PDF
    The fourth generation of the Sloan Digital Sky Survey (SDSS-IV) has been in operation since July 2014. This paper describes the second data release from this phase, and the fourteenth from SDSS overall (making this, Data Release Fourteen or DR14). This release makes public data taken by SDSS-IV in its first two years of operation (July 2014-2016). Like all previous SDSS releases, DR14 is cumulative, including the most recent reductions and calibrations of all data taken by SDSS since the first phase began operations in 2000. New in DR14 is the first public release of data from the extended Baryon Oscillation Spectroscopic Survey (eBOSS); the first data from the second phase of the Apache Point Observatory (APO) Galactic Evolution Experiment (APOGEE-2), including stellar parameter estimates from an innovative data driven machine learning algorithm known as "The Cannon"; and almost twice as many data cubes from the Mapping Nearby Galaxies at APO (MaNGA) survey as were in the previous release (N = 2812 in total). This paper describes the location and format of the publicly available data from SDSS-IV surveys. We provide references to the important technical papers describing how these data have been taken (both targeting and observation details) and processed for scientific use. The SDSS website (www.sdss.org) has been updated for this release, and provides links to data downloads, as well as tutorials and examples of data use. SDSS-IV is planning to continue to collect astronomical data until 2020, and will be followed by SDSS-V.Comment: SDSS-IV collaboration alphabetical author data release paper. DR14 happened on 31st July 2017. 19 pages, 5 figures. Accepted by ApJS on 28th Nov 2017 (this is the "post-print" and "post-proofs" version; minor corrections only from v1, and most of errors found in proofs corrected

    Search for vector-like T quarks decaying to top quarks and Higgs bosons in the all-hadronic channel using jet substructure

    Get PDF
    Peer reviewe

    Search for the production of dark matter in association with top-quark pairs in the single-lepton final state in proton-proton collisions at √s=8 TeV

    Get PDF
    Peer reviewe

    Angular analysis of the decay B-0 -> K*(0)mu(+)mu(-) from pp collisions at root s=8 TeV

    Get PDF
    Peer reviewe

    Search for supersymmetry in events with a photon, a lepton, and missing transverse momentum in pp collisions at root s=8 TeV

    Get PDF

    Search for a charged Higgs boson in pp collisions at root s=8 TeV

    Get PDF
    Peer reviewe
    corecore