40 research outputs found

    Procalcitonin is not sufficiently reliable to be the sole marker of neonatal sepsis of nosocomial origin

    Get PDF
    BACKGROUND: It has recently been suggested that serum procalcitonin (PCT) is of value in the diagnosis of neonatal sepsis, with varying results. The aim of this prospective multicenter study was to assess the usefulness of PCT as a marker of neonatal sepsis of nosocomial origin. METHODS: One hundred infants aged between 4 and 28 days of life admitted to the Neonatology Services of 13 acute-care teaching hospitals in Spain over 1-year with clinical suspicion of neonatal sepsis of nosocomial origin were included in the study. Serum PCT concentrations were determined by a specific immunoluminometric assay. The reliability of PCT for the diagnosis of nosocomial neonatal sepsis at the time of suspicion of infection and at 12–24 h and 36–48 h after the onset of symptoms was calculated by receiver-operating characteristics (ROC) curves. The Youden's index (sensitivity + specificity - 1) was used for determination of optimal cutoff values of the diagnostic tests in the different postnatal periods. Sensitivity, specificity, and the likelihood ratio of a positive and negative result with the 95% confidence interval (CI) were calculated. RESULTS: The diagnosis of nosocomial sepsis was confirmed in 61 neonates. Serum PCT concentrations were significantly higher at initial suspicion and at 12–24 h and 36–48 h after the onset of symptoms in neonates with confirmed sepsis than in neonates with clinically suspected but not confirmed sepsis. Optimal PCT thresholds according to ROC curves were 0.59 ng/mL at the time of suspicion of sepsis (sensitivity 81.4%, specificity 80.6%); 1.34 ng/mL within 12–24 h of birth (sensitivity 73.7%, specificity 80.6%), and 0.69 ng/mL within 36–48 h of birth (sensitivity 86.5%, specificity 72.7%). CONCLUSION: Serum PCT concentrations showed a moderate diagnostic reliability for the detection of nosocomial neonatal sepsis from the time of suspicion of infection. PCT is not sufficiently reliable to be the sole marker of sepsis, but would be useful as part of a full sepsis evaluation

    Preimaginal Stages of the Emerald Ash Borer, Agrilus planipennis Fairmaire (Coleoptera: Buprestidae): An Invasive Pest on Ash Trees (Fraxinus)

    Get PDF
    This study provides the most detailed description of the immature stages of Agrilus planipennis Fairmaire to date and illustrates suites of larval characters useful in distinguishing among Agrilus Curtis species and instars. Immature stages of eight species of Agrilus were examined and imaged using light and scanning electron microscopy. For A. planipennis all preimaginal stages (egg, instars I-IV, prepupa and pupa) were described. A combination of 14 character states were identified that serve to identify larvae of A. planipennis. Our results support the segregation of Agrilus larvae into two informal assemblages based on characters of the mouthparts, prothorax, and abdomen: the A. viridis and A. ater assemblages, with A. planipennis being more similar to the former. Additional evidence is provided in favor of excluding A. planipennis from the subgenus Uragrilus

    Foxp2 Regulates Gene Networks Implicated in Neurite Outgrowth in the Developing Brain

    Get PDF
    Forkhead-box protein P2 is a transcription factor that has been associated with intriguing aspects of cognitive function in humans, non-human mammals, and song-learning birds. Heterozygous mutations of the human FOXP2 gene cause a monogenic speech and language disorder. Reduced functional dosage of the mouse version (Foxp2) causes deficient cortico-striatal synaptic plasticity and impairs motor-skill learning. Moreover, the songbird orthologue appears critically important for vocal learning. Across diverse vertebrate species, this well-conserved transcription factor is highly expressed in the developing and adult central nervous system. Very little is known about the mechanisms regulated by Foxp2 during brain development. We used an integrated functional genomics strategy to robustly define Foxp2-dependent pathways, both direct and indirect targets, in the embryonic brain. Specifically, we performed genome-wide in vivo ChIP–chip screens for Foxp2-binding and thereby identified a set of 264 high-confidence neural targets under strict, empirically derived significance thresholds. The findings, coupled to expression profiling and in situ hybridization of brain tissue from wild-type and mutant mouse embryos, strongly highlighted gene networks linked to neurite development. We followed up our genomics data with functional experiments, showing that Foxp2 impacts on neurite outgrowth in primary neurons and in neuronal cell models. Our data indicate that Foxp2 modulates neuronal network formation, by directly and indirectly regulating mRNAs involved in the development and plasticity of neuronal connections

    Nothing Lasts Forever: Environmental Discourses on the Collapse of Past Societies

    Get PDF
    The study of the collapse of past societies raises many questions for the theory and practice of archaeology. Interest in collapse extends as well into the natural sciences and environmental and sustainability policy. Despite a range of approaches to collapse, the predominant paradigm is environmental collapse, which I argue obscures recognition of the dynamic role of social processes that lie at the heart of human communities. These environmental discourses, together with confusion over terminology and the concepts of collapse, have created widespread aporia about collapse and resulted in the creation of mixed messages about complex historical and social processes

    Multi-messenger observations of a binary neutron star merger

    Get PDF
    On 2017 August 17 a binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors. The Fermi Gamma-ray Burst Monitor independently detected a gamma-ray burst (GRB 170817A) with a time delay of ~1.7 s with respect to the merger time. From the gravitational-wave signal, the source was initially localized to a sky region of 31 deg2 at a luminosity distance of 40+8-8 Mpc and with component masses consistent with neutron stars. The component masses were later measured to be in the range 0.86 to 2.26 Mo. An extensive observing campaign was launched across the electromagnetic spectrum leading to the discovery of a bright optical transient (SSS17a, now with the IAU identification of AT 2017gfo) in NGC 4993 (at ~40 Mpc) less than 11 hours after the merger by the One- Meter, Two Hemisphere (1M2H) team using the 1 m Swope Telescope. The optical transient was independently detected by multiple teams within an hour. Subsequent observations targeted the object and its environment. Early ultraviolet observations revealed a blue transient that faded within 48 hours. Optical and infrared observations showed a redward evolution over ~10 days. Following early non-detections, X-ray and radio emission were discovered at the transient’s position ~9 and ~16 days, respectively, after the merger. Both the X-ray and radio emission likely arise from a physical process that is distinct from the one that generates the UV/optical/near-infrared emission. No ultra-high-energy gamma-rays and no neutrino candidates consistent with the source were found in follow-up searches. These observations support the hypothesis that GW170817 was produced by the merger of two neutron stars in NGC4993 followed by a short gamma-ray burst (GRB 170817A) and a kilonova/macronova powered by the radioactive decay of r-process nuclei synthesized in the ejecta

    The SWI/SNF KlSnf2 Subunit Controls the Glucose Signaling Pathway To Coordinate Glycolysis and Glucose Transport in Kluyveromyces lactis

    No full text
    In Kluyveromyces lactis, the expression of the major glucose permease gene RAG1 is controlled by extracellular glucose through a signaling cascade similar to the Saccharomyces cerevisiae Snf3/Rgt2/Rgt1 pathway. We have identified a key component of the K. lactis glucose signaling pathway by characterizing a new mutation, rag20-1, which impairs the regulation of RAG1 and hexokinase RAG5 genes by glucose. Functional complementation of the rag20-1 mutation identified the KlSNF2 gene, which encodes a protein 59% identical to S. cerevisiae Snf2, the major subunit of the SWI/SNF chromatin remodeling complex. Reverse transcription-quantitative PCR and chromatin immunoprecipitation analyses confirmed that the KlSnf2 protein binds to RAG1 and RAG5 promoters and promotes the recruitment of the basic helix-loop-helix Sck1 activator. Besides this transcriptional effect, KlSnf2 is also implicated in the glucose signaling pathway by controlling Sms1 and KlRgt1 posttranscriptional modifications. When KlSnf2 is absent, Sms1 is not degraded in the presence of glucose, leading to constitutive RAG1 gene repression by KlRgt1. Our work points out the crucial role played by KlSnf2 in the regulation of glucose transport and metabolism in K. lactis, notably, by suggesting a link between chromatin remodeling and the glucose signaling pathway
    corecore