240 research outputs found

    GaSbBi alloys and heterostructures: fabrication and properties

    Get PDF
    International audienceDilute bismuth (Bi) III-V alloys have recently attracted great attention, due to their properties of band-gap reduction and spin-orbit splitting. The incorporation of Bi into antimonide based III-V semiconductors is very attractive for the development of new optoelectronic devices working in the mid-infrared range (2-5 µm). However, due to its large size, Bi does not readily incorporate into III-V alloys and the epitaxy of III-V dilute bismides is thus very challenging. This book chapter presents the most recent developments in the epitaxy and characterization of GaSbBi alloys and heterostructures

    Reduction in the levels of CoQ biosynthetic proteins is related to an increase in lifespan without evidence of hepatic mitohormesis

    Get PDF
    Mitohormesis is an adaptive response induced by a mild mitochondrial stress that promotes longevity and metabolic health in different organisms. This mechanism has been proposed as the cause of the increase in the survival in Coq7+/− (Mclk1+/−) mice, which show hepatic reduction of COQ7, early mitochondrial dysfunction and increased oxidative stress. Our study shows that the lack of COQ9 in Coq9Q95X mice triggers the reduction of COQ7, COQ6 and COQ5, which results in an increase in life expectancy. However, our results reveal that the hepatic CoQ levels are not decreased and, therefore, neither mitochondrial dysfunction or increased oxidative stress are observed in liver of Coq9Q95X mice. These data point out the tissue specific differences in CoQ biosynthesis. Moreover, our results suggest that the effect of reduced levels of COQ7 on the increased survival in Coq9Q95X mice may be due to mitochondrial mechanisms in non-liver tissues or to other unknown mechanisms.This work was supported by grants from Ministerio de Economía Competitividad, Spain, and the ERDF (Grant Number SAF2015-65786-R), from the Consejería de Economía, Innovación, Ciencia y Empleo, Junta de Andalucía (grant number P10-CTS-6133) and from the University of Granada (grant reference “UNETE”, UCE-PP2017-06). AHG is a “FPU fellow” from the Ministerio de Educación Cultura y Deporte, Spain. MLS was a predoctoral fellow from the Consejería de Economía, Innovación, Ciencia y Empleo, Junta de Andalucía. LCL was supported by the “Ramón y Cajal” National Programme, Ministerio de Economía y Competitividad, Spain (RYC-2011-07643)

    In Vivo Evaluation of the Biocompatibility of Surface Modified Hemodialysis Polysulfone Hollow Fibers in Rat

    Get PDF
    Polysulfone (Psf) hollow fiber membranes (HFMs) have been widely used in blood purification but their biocompatibility remains a concern. To enhance their biocompatibility, Psf/TPGS (d-α-tocopheryl polyethylene glycol 1000 succinate) composite HFMs and 2-methacryloyloxyethyl phosphorylcholine (MPC) coated Psf HFMs have been prepared. They have been evaluated for in vivo biocompatibility and graft acceptance and compared with sham and commercial membranes by intra-peritoneal implantation in rats at day 7 and 21. Normal body weights, tissue formation and angiogenesis indicate acceptance of implants by the animals. Hematological observations show presence of post-surgical stress which subsides over time. Serum biochemistry results reveal normal organ function and elevated liver ALP levels at day 21. Histological studies exhibit fibroblast recruitment cells, angiogenesis and collagen deposition at the implant surface indicating new tissue formation. Immuno-histochemistry studies show non-activation of MHC molecules signifying biocompatibilty. Additionally, Psf/TPGS exhibit most favorable tissue response as compared with other HFMs making them the material of choice for HFM preparation for hemodialysis applications

    Development of a context model to prioritize drug safety alerts in CPOE systems

    Get PDF
    Background: Computerized physician order entry systems (CPOE) can reduce the number of medication errors and adverse drug events (ADEs) in healthcare institutions. Unfortunately, they tend to produce a large number of partly irrelevant alerts, in turn leading to alert overload and causing alert fatigue. The objective of this work is to identify factors that can be used to prioritize and present alerts depending on the 'context' of a clinical situation. Methods: We used a combination of literature searches and expert interviews to identify and validate the possible context factors. The internal validation of the context factors was performed by calculating the inter-rater agreement of two researcher's classification of 33 relevant articles. Results: We developed a context model containing 20 factors. We grouped these context factors into three categories: characteristics of the patient or case (e. g. clinical status of the patient); characteristics of the organizational unit or user (e. g. professional experience of the user); and alert characteristics (e. g. severity of the effect). The internal validation resulted in nearly perfect agreement (Cohen's Kappa value of 0.97). Conclusion: To our knowledge, this is the first structured attempt to develop a comprehensive context model for prioritizing drug safety alerts in CPOE systems. The outcome of this work can be used to develop future tailored drug safety alerting in CPOE systems

    Developmental changes in human dopamine neurotransmission: cortical receptors and terminators

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Dopamine is integral to cognition, learning and memory, and dysfunctions of the frontal cortical dopamine system have been implicated in several developmental neuropsychiatric disorders. The dorsolateral prefrontal cortex (DLPFC) is critical for working memory which does not fully mature until the third decade of life. Few studies have reported on the normal development of the dopamine system in human DLPFC during postnatal life. We assessed pre- and postsynaptic components of the dopamine system including tyrosine hydroxylase, the dopamine receptors (D1, D2 short and D2 long isoforms, D4, D5), catechol-<it>O</it>-methyltransferase, and monoamine oxidase (A and B) in the developing human DLPFC (6 weeks -50 years).</p> <p>Results</p> <p>Gene expression was first analysed by microarray and then by quantitative real-time PCR. Protein expression was analysed by western blot. Protein levels for tyrosine hydroxylase peaked during the first year of life (p < 0.001) then gradually declined to adulthood. Similarly, mRNA levels of dopamine receptors D2S (p < 0.001) and D2L (p = 0.003) isoforms, monoamine oxidase A (p < 0.001) and catechol-<it>O</it>-methyltransferase (p = 0.024) were significantly higher in neonates and infants as was catechol-<it>O</it>-methyltransferase protein (32 kDa, p = 0.027). In contrast, dopamine D1 receptor mRNA correlated positively with age (p = 0.002) and dopamine D1 receptor protein expression increased throughout development (p < 0.001) with adults having the highest D1 protein levels (p ≤ 0.01). Monoamine oxidase B mRNA and protein (p < 0.001) levels also increased significantly throughout development. Interestingly, dopamine D5 receptor mRNA levels negatively correlated with age (r = -0.31, p = 0.018) in an expression profile opposite to that of the dopamine D1 receptor.</p> <p>Conclusions</p> <p>We find distinct developmental changes in key components of the dopamine system in DLPFC over postnatal life. Those genes that are highly expressed during the first year of postnatal life may influence and orchestrate the early development of cortical neural circuitry while genes portraying a pattern of increasing expression with age may indicate a role in DLPFC maturation and attainment of adult levels of cognitive function.</p

    Multi-messenger observations of a binary neutron star merger

    Get PDF
    On 2017 August 17 a binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors. The Fermi Gamma-ray Burst Monitor independently detected a gamma-ray burst (GRB 170817A) with a time delay of ~1.7 s with respect to the merger time. From the gravitational-wave signal, the source was initially localized to a sky region of 31 deg2 at a luminosity distance of 40+8-8 Mpc and with component masses consistent with neutron stars. The component masses were later measured to be in the range 0.86 to 2.26 Mo. An extensive observing campaign was launched across the electromagnetic spectrum leading to the discovery of a bright optical transient (SSS17a, now with the IAU identification of AT 2017gfo) in NGC 4993 (at ~40 Mpc) less than 11 hours after the merger by the One- Meter, Two Hemisphere (1M2H) team using the 1 m Swope Telescope. The optical transient was independently detected by multiple teams within an hour. Subsequent observations targeted the object and its environment. Early ultraviolet observations revealed a blue transient that faded within 48 hours. Optical and infrared observations showed a redward evolution over ~10 days. Following early non-detections, X-ray and radio emission were discovered at the transient’s position ~9 and ~16 days, respectively, after the merger. Both the X-ray and radio emission likely arise from a physical process that is distinct from the one that generates the UV/optical/near-infrared emission. No ultra-high-energy gamma-rays and no neutrino candidates consistent with the source were found in follow-up searches. These observations support the hypothesis that GW170817 was produced by the merger of two neutron stars in NGC4993 followed by a short gamma-ray burst (GRB 170817A) and a kilonova/macronova powered by the radioactive decay of r-process nuclei synthesized in the ejecta

    Magnetic susceptibility anisotropy of myocardium imaged by cardiovascular magnetic resonance reflects the anisotropy of myocardial filament α-helix polypeptide bonds

    Get PDF
    BACKGROUND: A key component of evaluating myocardial tissue function is the assessment of myofiber organization and structure. Studies suggest that striated muscle fibers are magnetically anisotropic, which, if measurable in the heart, may provide a tool to assess myocardial microstructure and function. METHODS: To determine whether this weak anisotropy is observable and spatially quantifiable with cardiovascular magnetic resonance (CMR), both gradient-echo and diffusion-weighted data were collected from intact mouse heart specimens at 9.4 Tesla. Susceptibility anisotropy was experimentally calculated using a voxelwise analysis of myocardial tissue susceptibility as a function of myofiber angle. A myocardial tissue simulation was developed to evaluate the role of the known diamagnetic anisotropy of the peptide bond in the observed susceptibility contrast. RESULTS: The CMR data revealed that myocardial tissue fibers that were parallel and perpendicular to the magnetic field direction appeared relatively paramagnetic and diamagnetic, respectively. A linear relationship was found between the magnetic susceptibility of the myocardial tissue and the squared sine of the myofiber angle with respect to the field direction. The multi-filament model simulation yielded susceptibility anisotropy values that reflected those found in the experimental data, and were consistent that this anisotropy decreased as the echo time increased. CONCLUSIONS: Though other sources of susceptibility anisotropy in myocardium may exist, the arrangement of peptide bonds in the myofilaments is a significant, and likely the most dominant source of susceptibility anisotropy. This anisotropy can be further exploited to probe the integrity and organization of myofibers in both healthy and diseased heart tissue
    corecore