336 research outputs found

    Radiative forcing of black carbon over Delhi

    Get PDF
    The radiative effects of black carbon (BC) aerosols over New Delhi, the capital city of India, for the period August 2010–July 2011, have been investigated using Santa Barbara DISTORT Atmospheric Radiative Transfer (SBDART) model in the present paper. The monthly mean BC concentrations in Delhi, an urban location, vary in between 15.935 ± 2.06 μg m−3 (December 2010)–2.44 ± 0.58 μg m−3 (July 2011). The highest value for monthly mean BC forcing has been found to be in November 2010 (66.10 ± 6.86 Wm−2) and the lowest in July 2011 (23 ± 3.89 Wm−2). Being the host city for the XIX Commonwealth Games (CWG-2010), government of Delhi set up a plan to reduce emissions of air pollutants during Games, from 03 October to 14 October, 2010. But opposite to the expectations, the emission controls implemented were not sufficient to reduce the pollutants like black carbon (BC), and therefore relatively a high value of BC radiative forcing (44.36 ± 2.4) was observed during the month of October 201

    Copolymer-induced stabilizing effect of highly swollen hexagonal mesophases

    Full text link
    We show quantitatively that tiny amounts of copolymer that decorate a oil/water interfaces can greatly enhance the stability of swollen surfactant hexagonal phases, comprising oil tubes regularly arranged in a water matrix. Such soft composite materials, whose both radius of the tubes and water channel between the tubes can be controlled independently over large ranges, offer a potential interest for the synthesis of mesoporous materials

    XPR1 mediates the pancreatic B-cell phosphate flush

    Get PDF
    Glucose-stimulated insulin secretion is the hallmark of the pancreatic β-cell, a critical player in the regulation of blood glucose concentration. In 1974, the remarkable observation was made that an efflux of intracellular inorganic phosphate (P ) accompanied the events of stimulated insulin secretion. The mechanism behind this "phosphate flush," its association with insulin secretion, and its regulation have since then remained a mystery. We recapitulated the phosphate flush in the MIN6m9 β-cell line and pseudoislets. We demonstrated that knockdown of XPR1, a phosphate transporter present in MIN6m9 cells and pancreatic islets, prevented this flush. Concomitantly, XPR1 silencing led to intracellular P accumulation and a potential impact on Ca signaling. XPR1 knockdown slightly blunted first-phase glucose-stimulated insulin secretion in MIN6m9 cells, but had no significant impact on pseudoislet secretion. In keeping with other cell types, basal P efflux was stimulated by inositol pyrophosphates, and basal intracellular P accumulated following knockdown of inositol hexakisphosphate kinases. However, the glucose-driven phosphate flush occurred despite inositol pyrophosphate depletion. Finally, while it is unlikely that XPR1 directly affects exocytosis, it may protect Ca signaling. Thus, we have revealed XPR1 as the missing mediator of the phosphate flush, shedding light on a 45-year-old mystery

    Urban surface water pollution problems arising from misconnections

    Get PDF
    The impacts of misconnections on the organic and nutrient loadings to surface waters are assessed using specific household appliance data for two urban sub-catchments located in the London metropolitan region and the city of Swansea. Potential loadings of biochemical oxygen demand (BOD), soluble reactive phosphorus (PO4-P) and ammoniacal nitrogen (NH4-N) due to misconnections are calculated for three different scenarios based on the measured daily flows from specific appliances and either measured daily pollutant concentrations or average pollutant concentrations for relevant greywater and black water sources obtained from an extensive review of the literature. Downstream receiving water concentrations, together with the associated uncertainties, are predicted from derived misconnection discharge concentrations and compared to existing freshwater standards for comparable river types. Consideration of dilution ratios indicates that these would need to be of the order of 50–100:1 to maintain high water quality with respect to BOD and NH4-N following typical misconnection discharges but only poor quality for PO4-P is likely to be achievable. The main pollutant loading contributions to misconnections arise from toilets (NH4-N and BOD), kitchen sinks (BOD and PO4-P) washing machines (PO4-P and BOD) and, to a lesser extent, dishwashers (PO4-P). By completely eliminating toilet misconnections and ensuring misconnections from all other appliances do not exceed 2%, the potential pollution problems due to BOD and NH4-N discharges would be alleviated but this would not be the case for PO4-P. In the event of a treatment option being preferred to solve the misconnection problem, it is shown that for an area the size of metropolitan Greater London, a sewage treatment plant with a Population Equivalent value approaching 900,000would be required to efficiently remove BOD and NH4-N to safely dischargeable levels but such a plant is unlikely to have the capacity to deal satisfactorily with incoming PO4-P loads from misconnections

    Navigating infection risk during oviposition and cannibalistic foraging in a holometabolous insect

    Get PDF
    Deciding where to eat and raise offspring carries important fitness consequences for all animals, especially if foraging, feeding and reproduction increase pathogen exposure. In insects with complete metamorphosis, foraging mainly occurs during the larval stage, while oviposition decisions are made by adult females. Selection for infection avoidance behaviours may therefore be developmentally uncoupled. Using a combination of experimental infections and behavioral choice assays, we tested if Drosophila melanogaster fruit flies avoid infectious environments at distinct developmental stages. When given conspecific fly carcasses as a food source, larvae did not discriminate between carcasses that were clean or infected with the pathogenic Drosophila C Virus (DCV), even though cannibalism was a viable route of DCV transmission. When laying eggs, DCV-infected females did not discriminate between infectious and non-infectious carcasses. Healthy mothers however, laid more eggs near a clean rather than an infectious carcass. Avoidance during oviposition changed over time: after an initial oviposition period, healthy mothers stopped avoiding infectious carcasses. We attribute this to a trade-off between infection risk and reproduction. Laying eggs near potentially infectious carcasses was always preferred to sites containing only fly food. Our findings suggest infection avoidance contributes to how mothers provision their offspring and underline the need to consider infection avoidance behaviors at multiple life-stages

    The biological impact of blood pressure-associated genetic variants in the natriuretic peptide receptor C gene on human vascular smooth muscle.

    Get PDF
    Elevated blood pressure (BP) is a major global risk factor for cardiovascular disease. Genome-wide association studies have identified several genetic variants at the NPR3 locus associated with BP, but the functional impact of these variants remains to be determined. Here we confirmed, by a genome-wide association study within UK Biobank, the existence of two independent BP-related signals within NPR3 locus. Using human primary vascular smooth muscle cells (VSMCs) and endothelial cells (ECs) from different individuals, we found that the BP-elevating alleles within one linkage disequilibrium block identified by the sentinel variant rs1173771 was associated with lower endogenous NPR3 mRNA and protein levels in VSMCs, together with reduced levels in open chromatin and nuclear protein binding. The BP-elevating alleles also increased VSMC proliferation, angiotensin II-induced calcium flux and cell contraction. However, an analogous genotype-dependent association was not observed in vascular ECs. Our study identifies novel, putative mechanisms for BP-associated variants at the NPR3 locus to elevate BP, further strengthening the case for targeting NPR-C as a therapeutic approach for hypertension and cardiovascular disease prevention

    Rare variant in scavenger receptor BI raises HDL cholesterol and increases risk of coronary heart disease.

    Get PDF
    Scavenger receptor BI (SR-BI) is the major receptor for high-density lipoprotein (HDL) cholesterol (HDL-C). In humans, high amounts of HDL-C in plasma are associated with a lower risk of coronary heart disease (CHD). Mice that have depleted Scarb1 (SR-BI knockout mice) have markedly elevated HDL-C levels but, paradoxically, increased atherosclerosis. The impact of SR-BI on HDL metabolism and CHD risk in humans remains unclear. Through targeted sequencing of coding regions of lipid-modifying genes in 328 individuals with extremely high plasma HDL-C levels, we identified a homozygote for a loss-of-function variant, in which leucine replaces proline 376 (P376L), in SCARB1, the gene encoding SR-BI. The P376L variant impairs posttranslational processing of SR-BI and abrogates selective HDL cholesterol uptake in transfected cells, in hepatocyte-like cells derived from induced pluripotent stem cells from the homozygous subject, and in mice. Large population-based studies revealed that subjects who are heterozygous carriers of the P376L variant have significantly increased levels of plasma HDL-C. P376L carriers have a profound HDL-related phenotype and an increased risk of CHD (odds ratio = 1.79, which is statistically significant)

    Modelling the carbon cycle of Miscanthus plantations: existing models and the potential for their improvement

    Get PDF
    The lignocellulosic perennial grass Miscanthus has received considerable attention as a potential bioenergy crop over the last 25 years, but few commercial plantations exist globally. This is partly due to the uncertainty associated with claims that land use change (LUC) to Miscanthus will result in both commercially viable yields and net increases in carbon (C) storage. To simulate what the effects may be after LUC to Miscanthus, six process-based models have been parameterised for Miscanthus and here we review how these models operate. This review provides an overview of the key Miscanthus soil organic matter models and then highlights what measurers can do to accelerate model development. Each model (WIMOVAC, BioCro, Agro-IBIS, DAYCENT, DNDC and ECOSSE) is capable of simulating biomass production and soil C dynamics based on specific site characteristics. Understanding the design of these models is important in model selection as well as being important for field researchers to collect the most relevant data to improve model performance. The rapid increase in models parameterised for Miscanthus is promising but refinements and improvements are still required to ensure model predictions are reliable and can be applied to spatial scales relevant for policy. Specific improvements, needed to ensure the models are applicable for a range of environmental conditions, come under two categories: 1) increased data generation and 2) development of frameworks and databases to allow simulations of ranging scales. Research into non-food bioenergy crops such as Miscanthus is relatively recent and this review highlights that there are still a number of knowledge gaps regarding Miscanthus specifically. For example, the low input requirements of Miscanthus make it particularly attractive as a bioenergy crop but it is essential that we increase our understanding of the crop’s nutrient re-mobilisation and ability to host N-fixing organisms in order to derive the most accurate simulations

    Biocompatibility of implantable materials: an oxidative stress viewpoint

    Get PDF
    Oxidative stress occurs when the production of oxidants surpasses the antioxidant capacity in living cells. Oxidative stress is implicated in a number of pathological conditions such as cardiovascular and neurodegenerative diseases but it also has crucial roles in the regulation of cellular activities. Over the last few decades, many studies have identified significant connections between oxidative stress, inflammation and healing. In particular, increasing evidence indicates that the production of oxidants and the cellular response to oxidative stress are intricately connected to the fate of implanted biomaterials. This review article provides an overview of the major mechanisms underlying the link between oxidative stress and the biocompatibility of biomaterials. ROS, RNS and lipid peroxidation products act as chemo-attractants, signalling molecules and agents of degradation during the inflammation and healing phases. As chemo-attractants and signalling molecules, they contribute to the recruitment and activation of inflammatory and healing cells, which in turn produce more oxidants. As agents of degradation, they contribute to the maturation of the extracellular matrix at the healing site and to the degradation of the implanted material. Oxidative stress is itself influenced by the material properties, such as by their composition, their surface properties and their degradation products. Because both cells and materials produce and react with oxidants, oxidative stress may be the most direct route mediating the communication between cells and materials. Improved understanding of the oxidative stress mechanisms following biomaterial implantation may therefore help the development of new biomaterials with enhanced biocompatibility
    corecore