621 research outputs found

    Understanding morphology and photo- stability of organic solar cells via advanced structural probes

    Get PDF
    The development of organic solar cells as a novel form of renewable energy has been driven by their potential for low-cost, large-scale fabrication though the solution-processing of semiconducting polymers and small molecules. Certified power conversion efficiencies have reached 13% as of 2016 thanks to the development of new donor-acceptor molecules, but the efficiency of any given device is still highly sensitive to the morphology that these materials adopt during deposition. It is essential that morphology is characterized thoroughly in order to establish the relationships between molecular structure, morphological properties and device performance; in order to maximise efficiency and make organic solar cells an economically competitive source of renewable energy. In this thesis, several spectroscopic techniques are used to probe the impact of various processing parameters on the molecular order, crystallinity and phase separation of polymer:fullerene blends. For the model blend system P3HT:PCBM, P3HT molecular order can be measured by resonant Raman spectroscopy, and PCBM is found to dissolve in the amorphous domains of the semi-crystalline polymer up to a miscibility limit of 25 %wt, above which it can only be accommodated by increased disorder. In situ annealing demonstrates that when heated above a glass transition temperature of ~50C, disordered blends separate into purer domains of high molecular order that correlate well to improved charge transport and efficiency for thermally annealed devices. Raman spectroscopy is also used to probe the stability of the high-efficiency PTB7:PC70BM blend. Photo-oxidation of PTB7 was found to induce specific vibrational changes that correlate to formation of a hydroxyl group on the benzodithiophene unit. In situ experiments reveal that hydroxylation precedes the loss of chromophores that results in deterioration of device performance, and is accelerated by blending with PC70BM. Understanding the impact of morphology on charge extraction from the active layer requires the selective probing of interfacial properties at the top and bottom of the organic film, which we demonstrate using SERS. For both a polymer:fullerene blend (PTB7:PC70BM) and a polymer:polymer blend (P3HT:F8TBT), spin-coated films exhibit interfacial compositions different from that of the bulk film and favourable to charge extraction from inverted device architectures, but can be modified by pre- or post-annealing treatments. Finally, we investigated the morphology of a novel low band-gap polymer, a tellurium analogue of polythiophene, in order to understand the impact of the heavy atom on chain planarity and polymer crystallinity. The Raman spectrum of P3ATe exhibited a much stronger sensitivity to molecular order, which was highly dependent on the length and linearity of the alkyl side chain, but there was no clear morphological reason why P3ATe reportedly performs poorly compared to P3HT, despite the superior absorption of its smaller band-gap.Open Acces

    Osler and the Infected Letter

    Get PDF
    The spread of infectious agents through the mail has concerned public health officials for 5 centuries. The dissemination of anthrax spores in the US mail in 2001 was a recent example. In 1901, two medical journals reported outbreaks of smallpox presumably introduced by letters contaminated with variola viruses. The stability and infectivity of the smallpox virus are reviewed from both a historical (anecdotal) perspective and modern virologic studies. Bubonic plague was the contagious disease that led to quarantines as early as the 14th century in port cities in southern Europe. Later, smallpox, cholera, typhus, and yellow fever were recognized as also warranting quarantine measures. Initially, attempts were made to decontaminate all goods imported from pestilential areas, particularly mail. Disinfection of mail was largely abandoned in the early 20th century with newer knowledge about the spread and stability of these 5 infectious agents

    Silicon carbide fibre silicon nitride matrix composites

    Get PDF
    Silicon carbide fibre/silicon nitride matrix composites have been fabricated using the reaction bonded silicon nitride (RBSN) and sintered reaction bonded silicon nitride (SRBSN) processing routes. A filament winding and tape casting system was developed to produce sheets of parallel aligned fibres within a layer of green matrix ('prepreg') which were cut, stacked and hot pressed to form a plate. This was nitrided and (in the case of SRBSN matrix composites) hot pressed at 1700°C to density the matrix. The magnesia (MgO) and the yttria/alumina (Y2O3/AI2O3) additive SRBSN systems were investigated as matrices for ease of processing and compatibility with the matrix. The MgO additive Si3N4 matrix reacted with the outer carbon rich layer on the surface of the fibres, framing a reaction layer approx. 2pm in thickness. A reaction layer was also observed with the Y2O3/AI2O3 additive matrix, but was thinner (<0.5um), and was identified as silicon carbide from the electron diffraction pattern. X-ray mapping in the SEM was used to investigate the spatial distribution of elements within the interface region to a resolution <lum, including light elements such as carbon. The 6wt%Y203/ 2wt%Al203 additive SRBSN system was chosen for more detailed investigation, and the majority of characterisation was performed using this composition. Oxidation of composite samples was carried out at temperatures between 1000°C and 1400°C for up to 1000 hours. Little damage was visible after 100 hours for all temperatures, corresponding to a relatively small drop in post oxidation bend strength. After 1000 hours at 1000°C both carbon rich outer layers and the central carbon core of the fibre were removed. Samples were severely oxidised after 1000 hours at 1400°C, having a glass layer on the outer surface and replacement of near surface fibre/matrix interfaces with glass. The post oxidation bend strengths for both conditions were approx.2/3 of the as fabricated strength. Less damage was observed after 1000 hours at 1200°C, and the post oxidation bend strength was higher than the 1000°C and 1400°C samples. Mechanical properties of the SRBSN matrix composite were investigated at room temperature and elevated temperatures (up to 1400°C). The average room temperature values for matrix cracking stress and ultimate strength (in bend) were 651.1 and 713.2 MPa respectively, with corresponding Weibull moduli of 5.7 and 8.7. The stresses are comparable to similar monolithic silicon nitrides. Room temperature tensile matrix cracking and ultimate strength were 232MPa and 413MPa, lower than the bend test results, which were attributed to bending stresses in the sample, lowering the apparent failure stresses. The samples failed in a composite like manner (i.e. controlled rather than catastrophic failure), with a substantially higher woric of fracture than monolithic materials. The average matrix cracking and ultimate bend strength at 1200°C were 516MPa and 554MPa, dropping to 178MPa and 486MPa at 1400°C (the matrix cracking stress was indistinct at 1400°C due to plasticity). The creep and stress rupture properties at 1300°C were investigated in four point bend, using dead-weight loading. The creep rate was KH/s at a stress of 200MPa, lower than a hot pressed silicon nitride with MgO additive, and higher than a hot isostatically pressed Y2O2/SÍO2 additive silicon nitride. A cavitation creep mechanism was deduced from the stress exponent, which was >1. Failure by stress rupture did not have a lower limit, which is also associated with cavitation of the amorphous grain boundary phase

    Detection and Degradation of Adenosine Monophosphate in Perchlorate-Spiked Martian Regolith Analogue, by Deep-Ultraviolet Spectroscopy

    Get PDF
    The search for organic biosignatures on Mars will depend on finding material protected from the destructive ambient radiation. Solar ultraviolet can induce photochemical degradation of organic compounds, but certain clays have been shown to preserve organic material. We examine how the SHERLOC instrument on the upcoming Mars 2020 mission will use deep-ultraviolet (UV) (248.6 nm) Raman and fluorescence spectroscopy to detect a plausible biosignature of adenosine 5â€Č-monophosphate (AMP) adsorbed onto Ca-montmorillonite clay. We found that the spectral signature of AMP is not altered by adsorption in the clay matrix but does change with prolonged exposure to the UV laser over dosages equivalent to 0.2–6 sols of ambient martian UV. For pure AMP, UV exposure leads to breaking of the aromatic adenine unit, but in the presence of clay the degradation is limited to minor alteration with new Raman peaks and increased fluorescence consistent with formation of 2-hydroxyadenosine, while 1 wt % Mg perchlorate increases the rate of degradation. Our results confirm that clays are effective preservers of organic material and should be considered high-value targets, but that pristine biosignatures may be altered within 1 sol of martian UV exposure, with implications for Mars 2020 science operations and sample caching

    Living standards and plague in London, 1560–1665

    Get PDF
    This article uses individual records of 930,000 burials and 630,000 baptisms to reconstruct the spatial and temporal patterns of birth and death in London from 1560 to 1665, a period dominated by recurrent plague. The plagues of 1563, 1603, 1625, and 1665 appear of roughly equal magnitude, with deaths running at five to six times their usual rate, but the impact on wealthier central parishes falls markedly through time. Tracking the weekly spread of plague, we find no evidence that plague emerged first in the docks, and in many cases elevated mortality emerges first in the poor northern suburbs. Looking at the seasonal pattern of mortality, we find that the characteristic autumn spike associated with plague continued into the early 1700s. Natural increase improved as smaller crises disappeared after 1590, but fewer than half of those born survived childhood

    Efficient solar cells are more stable: The impact of polymer molecular weight on performance of organic photovoltaics

    Get PDF
    The principle remaining challenge in the research area of organic photovoltaic (OPV) materials is to develop solar cells that combine high efficiency, stability and reproducibility. Here, we demonstrate an experimental strategy which has successfully addressed this challenge. We produced a number of samples of the highly efficient PTB7 polymer with various molecular weights (Mn 40–220k). OPV cells fabricated with this polymer demonstrated significant improvement of the cell efficiency (by 90% relative) and lifetime (by 300% relative) with the Mn increase. We attribute these effects to the lower density of recombination centers (persistent radical defects revealed by EPR spectroscopy) and better photoactive layer morphology in the samples with higher Mn. Relevance of the observed correlation between the OPV efficiency and stability is discussed

    Systems Analysis of the Dynamic Inflammatory Response to Tissue Damage Reveals Spatiotemporal Properties of the Wound Attractant Gradient

    Get PDF
    In the acute inflammatory phase following tissue damage, cells of the innate immune system are rapidly recruited to sites of injury by pro-inflammatory mediators released at the wound site. Although advances in live imaging allow us to directly visualize this process in vivo, the precise identity and properties of the primary immune damage attractants remain unclear, as it is currently impossible to directly observe and accurately measure these signals in tissues. Here, we demonstrate that detailed information about the attractant signals can be extracted directly from the in vivo behavior of the responding immune cells. By applying inference-based computational approaches to analyze the in vivo dynamics of the Drosophila inflammatory response, we gain new detailed insight into the spatiotemporal properties of the attractant gradient. In particular, we show that the wound attractant is released by wound margin cells, rather than by the wounded tissue per se, and that it diffuses away from this source at rates far slower than those of previously implicated signals such as H2O2 and ATP, ruling out these fast mediators as the primary chemoattractant. We then predict, and experimentally test, how competing attractant signals might interact in space and time to regulate multi-step cell navigation in the complex environment of a healing wound, revealing a period of receptor desensitization after initial exposure to the damage attractant. Extending our analysis to model much larger wounds, we uncover a dynamic behavioral change in the responding immune cells in vivo that is prognostic of whether a wound will subsequently heal or not

    In situ identification of Palaeoarchaean biosignatures using co-located Perseverance rover analyses: perspectives for in situ Mars science and sample return

    Get PDF
    The NASA Mars 2020 Perseverance rover is currently exploring Jezero crater, a Noachian locality that once hosted a delta–lake system with high habitability and biosignature preservation potential. Perseverance conducts detailed appraisals of rock targets using a synergistic payload capable of geological characterisation from kilometre to micron scales. The highest-resolution textural and chemical information will be provided by correlated WATSON (imaging), SHERLOC (deep-UV Raman and fluorescence spectroscopy) and PIXL (X-ray lithochemistry) analyses, enabling the distributions of organic and mineral phases within rock targets to be comprehensively established. Herein, we analyse Palaeoarchaean microbial mats from the ~3.42 Ga Buck Reef Chert (Barberton greenstone belt) – considered astrobiological analogues for a putative Martian biosphere – following a WATSON–SHERLOC–PIXL protocol identical to that conducted by Perseverance on Mars during each sampling activities. Correlating deep-UV Raman and fluorescence spectroscopic mapping with X-ray elemental mapping, we show that the Perseverance payload has the capability to detect thermally and texturally mature organic materials of biogenic origin and can highlight organic–mineral interrelationships and elemental co-location at fine spatial scales. We also show that the Perseverance protocol obtains very similar results to high-performance laboratory imaging, Raman spectroscopy and ”XRF instruments. This is encouraging for the prospect of detecting micro-scale organic-bearing textural biosignatures on Mars using the correlative micro-analytical approach enabled by WATSON, SHERLOC and PIXL; indeed, laminated, organic-bearing samples such as those studied herein are considered plausible biosignatures for a potential Noachian–Hesperian biosphere and would make compelling targets for sampling during the mission

    Extracellular ATP released by osteoblasts is a key local inhibitor of bone mineralisation

    Get PDF
    Previous studies have shown that exogenous ATP (>1”M) prevents bone formation in vitro by blocking mineralisation of the collagenous matrix. This effect is thought to be mediated via both P2 receptor-dependent pathways and a receptor-independent mechanism (hydrolysis of ATP to produce the mineralisation inhibitor pyrophosphate, PPi). Osteoblasts are also known to release ATP constitutively. To determine whether this endogenous ATP might exert significant biological effects, bone-forming primary rat osteoblasts were cultured with 0.5-2.5U/ml apyrase (which sequentially hydrolyses ATP to ADP to AMP + 2Pi). Addition of 0.5U/ml apyrase to osteoblast culture medium degraded extracellular ATP to <1% of control levels within 2 minutes; continuous exposure to apyrase maintained this inhibition for up to 14 days. Apyrase treatment for the first 72 hours of culture caused small decreases (≀25%) in osteoblast number, suggesting a role for endogenous ATP in stimulating cell proliferation. Continuous apyrase treatment for 14 days (≄0.5U/ml) increased mineralisation of bone nodules by up to 3-fold. Increases in bone mineralisation were also seen when osteoblasts were cultured with the ATP release inhibitors, NEM and brefeldin A, as well as with P2X1 and P2X7 receptor antagonists. Apyrase decreased alkaline phosphatase (TNAP) activity by up to 60%, whilst increasing the activity of the PPi-generating ecto-nucleotide pyrophosphatase/phosphodiesterases (NPPs) up to 2.7-fold. Both collagen production and adipocyte formation were unaffected. These data suggest that nucleotides released by osteoblasts in bone could act locally, via multiple mechanisms, to limit mineralisation
    • 

    corecore