265 research outputs found

    Evolutionary approaches to epistemic justification

    Get PDF
    What are the consequences of evolutionary theory for the epistemic standing of our beliefs? Evolutionary considerations can be used to either justify or debunk a variety of beliefs. This paper argues that evolutionary approaches to human cognition must at least allow for approximately reliable cognitive capacities. Approaches that portray human cognition as so deeply biased and deficient that no knowledge is possible are internally incoherent and self-defeating. As evolutionary theory offers the current best hope for a naturalistic epistemology, evolutionary approaches to epistemic justification seem to be committed to the view that our sensory systems and belief-formation processes are at least approximately accurate. However, for that reason they are vulnerable to the charge of circularity, and their success seems to be limited to commonsense beliefs. This paper offers an extension of evolutionary arguments by considering the use of external media in human cognitive processes: we suggest that the way humans supplement their evolved cognitive capacities with external tools may provide an effective way to increase the reliability of their beliefs and to counter evolved cognitive biases

    Functional analysis of the relative growth rate, chemical composition, construction and maintenance costs, and the payback time of Coffea arabica L. leaves in response to light and water availability

    Get PDF
    In this study, the combined effects of light and water availability on the functional relationships of the relative growth rate (RGR), leaf chemical composition, construction and maintenance costs, and benefits in terms of payback time for Coffea arabica are presented. Coffee plants were grown for 8 months in 100% or 15% full sunlight and then a four-month water shortage was implemented. Plants grown under full sunlight were also transferred to shade and vice versa. Overall, most of the traits assessed were much more responsive to the availability of light than to the water supply. Larger construction costs (12%), primarily associated with elevated phenol and alkaloid pools, were found under full sunlight. There was a positive correlation between these compounds and the RGR, the mass-based net carbon assimilation rate and the carbon isotope composition ratio, which, in turn, correlated negatively with the specific leaf area. The payback time was remarkably lower in the sun than in shade leaves and increased greatly in water-deprived plants. The differences in maintenance costs among the treatments were narrow, with no significant impact on the RGR, and there was no apparent trade-off in resource allocation between growth and defence. The current irradiance during leaf bud formation affected both the specific leaf area and leaf physiology upon transferring the plants from low to high light and vice versa. In summary, sun-grown plants fixed more carbon for growth and secondary metabolism, with the net effect of an increased RGR

    The Lantern, 2022-2023

    Get PDF
    The Genie and the Scotsman • Taxi Driver Savior Complex • Midnight Waltz • Eulogy of Caution • Don\u27t cry over spilled milk!! • I am the spider • The Lamb • The Witch and the Shepherd • Nostalgia • In the Summer I Want Light • I Am (Not) • Thanatophobia • We\u27re not children anymore • Hamlet\u27s Fool • Lemon • the last two people in the world • Amongst Chaos (what captivated me) • How About Now, Billy Joel • Bug Trap • Spring, Musser Hall, Room 219 • Time\u27s Denial • A Song of History • A Haiku for You • Hello! My Name Is: • Toilet Humor • Waterfalls • Communion • Shift • Mama Told Me Not To Waste My Life • Writer\u27s Block • Sharp-Tongued Women • Off Trail • Paper Bag Town • Serenity • Landscape of Ursinus Courtyard • Image #07, Affinist designer • Love Birds • Discount Narnia • False Security • Stripes and Illusions • The Burning of Ophelia • Molly\u27s Folly • The Son of Bethany • Meta • Little Blue Sailboats • Grease Trap • Hitchhiking With My Eyes Closed • The Donna of Our Time • The Magic of Cooking • The Closing Shift • A Baptism of Teeth • Dear Beloved • How Kansas Got to Chicago • Anywhere, if you look hard enoughhttps://digitalcommons.ursinus.edu/lantern/1191/thumbnail.jp

    Reconstruction of the Core and Extended Regulons of Global Transcription Factors

    Get PDF
    The processes underlying the evolution of regulatory networks are unclear. To address this question, we used a comparative genomics approach that takes advantage of the large number of sequenced bacterial genomes to predict conserved and variable members of transcriptional regulatory networks across phylogenetically related organisms. Specifically, we developed a computational method to predict the conserved regulons of transcription factors across α-proteobacteria. We focused on the CRP/FNR super-family of transcription factors because it contains several well-characterized members, such as FNR, FixK, and DNR. While FNR, FixK, and DNR are each proposed to regulate different aspects of anaerobic metabolism, they are predicted to recognize very similar DNA target sequences, and they occur in various combinations among individual α-proteobacterial species. In this study, the composition of the respective FNR, FixK, or DNR conserved regulons across 87 α-proteobacterial species was predicted by comparing the phylogenetic profiles of the regulators with the profiles of putative target genes. The utility of our predictions was evaluated by experimentally characterizing the FnrL regulon (a FNR-type regulator) in the α-proteobacterium Rhodobacter sphaeroides. Our results show that this approach correctly predicted many regulon members, provided new insights into the biological functions of the respective regulons for these regulators, and suggested models for the evolution of the corresponding transcriptional networks. Our findings also predict that, at least for the FNR-type regulators, there is a core set of target genes conserved across many species. In addition, the members of the so-called extended regulons for the FNR-type regulators vary even among closely related species, possibly reflecting species-specific adaptation to environmental and other factors. The comparative genomics approach we developed is readily applicable to other regulatory networks

    Acute and repetitive fronto-cerebellar tDCS stimulation improves mood in non-depressed participants

    Get PDF

    Genomic sister-disorders of neurodevelopment: an evolutionary approach

    Get PDF
    Genomic sister-disorders are defined here as diseases mediated by duplications versus deletions of the same region. Such disorders can provide unique information concerning the genomic underpinnings of human neurodevelopment because effects of diametric variation in gene copy number on cognitive and behavioral phenotypes can be inferred. We describe evidence from the literature on deletions versus duplications for the regions underlying the best-known human neurogenetic sister-disorders, including Williams syndrome, Velocardiofacial syndrome, and Smith–Magenis syndrome, as well as the X-chromosomal conditions Klinefelter and Turner syndromes. These data suggest that diametric copy-number alterations can, like diametric alterations to imprinted genes, generate contrasting phenotypes associated with autistic-spectrum and psychotic-spectrum conditions. Genomically based perturbations to the development of the human social brain are thus apparently mediated to a notable degree by effects of variation in gene copy number. We also conducted the first analyses of positive selection for genes in the regions affected by these disorders. We found evidence consistent with adaptive evolution of protein-coding genes, or selective sweeps, for three of the four sets of sister-syndromes analyzed. These studies of selection facilitate identification of candidate genes for the phenotypes observed and lend a novel evolutionary dimension to the analysis of human cognitive architecture and neurogenetic disorders

    Ceremonial plant consumption at Middle Bronze Age Büklükale, Kırıkkale Province, central Turkey

    Get PDF
    A shaft-like room at the Middle Bronze Age site of Büklükale in central Turkey preserved a rich archaeobotanical assemblage of charred and mineralised plant remains, dominated by fruits, spices and nuts mixed with probable bread and wood charcoals. The remains were recovered in association with numerous ceramic vessels, jewellery and exotic artefacts. We combine identification and analysis of the seeds and wood charcoals contained in this deposit with studies of Old Assyrian and Hittite textual records to investigate the circumstances of the assemblage’s formation and its significance for further understanding trade and plant consumption in Bronze Age Anatolia. We present the earliest archaeobotanical example in the region of rare and exotic plant species being consumed in the context of one or more social gatherings, including those possibly linked to ceremonial or ritual events. This offers new insights into the role of plants in the economic and social life of the southwest Asian Bronze Age, as well as the role of commensality and feasting in early states
    corecore