449 research outputs found
Mineralâwater reactions in Earthâs mantle:Predictions from Born theory and ab initio molecular dynamics
Recent studies present compelling evidence that a free aqueous fluid phase exists within the upper mantle. Fluid may be present at depths as great as the transition zone (410â660 km) and possibly beyond. The chemical reactivity of such deep fluids can be predicted from the Born model of solvation. To use the Born model, we need to know the dielectric constant of water under mantle conditions. We have used ab initio molecular dynamics simulations to determine the dielectric constant of water up to a pressure of 30 GPa and a temperature of 3000 K. Increased temperature lowers the dielectric constant and decreases ion solvation, but pressure overcomes this effect. The resulting high dielectric constant suggests that aqueous mantle fluids are highly reactive for ion solvation and mineral dissolution. We tested this by using the HelgesonâKirkhamâFlowers equation of state to estimate free energies of several mineral-solution and ion solvation reactions under mantle conditions. The results support previous estimates of carbonate solubility in the mantle. We also find that mantle fluids may play a key role in transporting ore metals: we evaluated the solubility of chalcopyrite and the complexation of Cu and Fe by Cl under mantle conditions and find that metal complexation is as significant as in ore-forming fluids in the crust. At reasonable conditions of pH and fH2, chalcopyrite is highly soluble. We tentatively hypothesize that exsolved fluids from subducted slabs may extract and mobilize primary sulfides in the mantle, implying potentially deep sources for porphyry copper deposits
Alpha scattering and capture reactions in the A = 7 system at low energies
Differential cross sections for He- scattering were measured in
the energy range up to 3 MeV. These data together with other available
experimental results for He and H scattering were
analyzed in the framework of the optical model using double-folded potentials.
The optical potentials obtained were used to calculate the astrophysical
S-factors of the capture reactions HeBe and
HLi, and the branching ratios for the transitions into
the two final Be and Li bound states, respectively. For
HeBe excellent agreement between calculated and
experimental data is obtained. For HLi a value
has been found which is a factor of about 1.5 larger than the adopted value.
For both capture reactions a similar branching ratio of has been obtained.Comment: submitted to Phys.Rev.C, 34 pages, figures available from one of the
authors, LaTeX with RevTeX, IK-TUW-Preprint 930540
Network development in biological gels: role in lymphatic vessel development
In this paper, we present a model that explains the prepatterning of lymphatic vessel morphology in collagen gels. This model is derived using the theory of two phase rubber material due to Flory and coworkers and it consists of two coupled fourth order partial differential equations describing the evolution of the collagen volume fraction, and the evolution of the proton concentration in a collagen implant; as described in experiments of Boardman and Swartz (Circ. Res. 92, 801â808, 2003). Using linear stability analysis, we find that above a critical level of proton concentration, spatial patterns form due to small perturbations in the initially uniform steady state. Using a long wavelength reduction, we can reduce the two coupled partial differential equations to one fourth order equation that is very similar to the CahnâHilliard equation; however, it has more complex nonlinearities and degeneracies. We present the results of numerical simulations and discuss the biological implications of our model
The orbit rigidity matrix of a symmetric framework
A number of recent papers have studied when symmetry causes frameworks on a
graph to become infinitesimally flexible, or stressed, and when it has no
impact. A number of other recent papers have studied special classes of
frameworks on generically rigid graphs which are finite mechanisms. Here we
introduce a new tool, the orbit matrix, which connects these two areas and
provides a matrix representation for fully symmetric infinitesimal flexes, and
fully symmetric stresses of symmetric frameworks. The orbit matrix is a true
analog of the standard rigidity matrix for general frameworks, and its analysis
gives important insights into questions about the flexibility and rigidity of
classes of symmetric frameworks, in all dimensions.
With this narrower focus on fully symmetric infinitesimal motions, comes the
power to predict symmetry-preserving finite mechanisms - giving a simplified
analysis which covers a wide range of the known mechanisms, and generalizes the
classes of known mechanisms. This initial exploration of the properties of the
orbit matrix also opens up a number of new questions and possible extensions of
the previous results, including transfer of symmetry based results from
Euclidean space to spherical, hyperbolic, and some other metrics with shared
symmetry groups and underlying projective geometry.Comment: 41 pages, 12 figure
Effect of pre-cardiac and adult stages of Dirofilaria immitis in pulmonary disease of cats: CBC, bronchial lavage cytology, serology, radiographs, CT images, bronchial reactivity, and histopathology
AbstractA controlled, blind study was conducted to define the initial inflammatory response and lung damage associated with the death of precardiac stages of Dirofilaria immitis in cats as compared to adult heartworm infections and normal cats. Three groups of six cats each were used: UU: uninfected untreated controls; PreS I: infected with 100 D. immitis L3 by subcutaneous injection and treated topically with selamectin 32 and 2 days pre-infection and once monthly for 8 months); IU: infected with 100 D. immitis L3 and left untreated. Peripheral blood, serum, bronchial lavage, and thoracic radiographic images were collected from all cats on Days 0, 70, 110, 168, and 240. CT images were acquired on Days 0, 110, and 240. Cats were euthanized, and necropsies were conducted on Day 240 to determine the presence of heartworms. Bronchial rings were collected for in vitro reactivity. Lung, heart, brain, kidney, and liver tissues were collected for histopathology. Results were compared for changes within each group. Pearson and Spearman correlations were performed for association between histologic, radiographic, serologic, hematologic and bronchoalveolar lavage (BAL) results. Infected cats treated with selamectin did not develop radiographically evident changes throughout the study, were heartworm antibody negative, and were free of adult heartworms and worm fragments at necropsy. Histologic lung scores and CT analysis were not significantly different between PreS I cats and UU controls. Subtle alveolar myofibrosis was noted in isolated areas of several PreS I cats and an eosinophilic BAL cytology was noted on Days 75 and 120. Bronchial ring reactivity was blunted in IU cats but was normal in PreS I and UU cats. The IU cats became antibody positive, and five cats developed adult heartworms. All cats with heartworms were antigen positive at one time point; but one cat was antibody positive, antigen negative, with viable adult females at necropsy. The CT revealed early involvement of all pulmonary arteries and a random pattern of parenchymal disease with severe lesions immediately adjacent to normal areas. Analysis of CT 3D reconstruction and Hounsfield units demonstrated lung disease consistent with restrictive pulmonary fibrosis with an interstitial infiltrate, absence of air trapping, and decrease in total lung volume in Group IU as compared to Groups UU and PreS I. The clinical implications of this study are that cats pretreated with selamectin 1 month before D. immitis L3 infection did not become serologically positive and did not develop pulmonary arterial hypertrophy and myofibrosis
Spinor condensates and light scattering from Bose-Einstein condensates
These notes discuss two aspects of the physics of atomic Bose-Einstein
condensates: optical properties and spinor condensates. The first topic
includes light scattering experiments which probe the excitations of a
condensate in both the free-particle and phonon regime. At higher light
intensity, a new form of superradiance and phase-coherent matter wave
amplification were observed. We also discuss properties of spinor condensates
and describe studies of ground--state spin domain structures and dynamical
studies which revealed metastable excited states and quantum tunneling.Comment: 58 pages, 33 figures, to appear in Proceedings of Les Houches 1999
Summer School, Session LXXI
Nanoscale Mechanical Characterisation of Amyloid Fibrils Discovered in a Natural Adhesive
Using the atomic force microscope, we have investigated the nanoscale mechanical response of the attachment adhesive of the terrestrial alga Prasiola linearis (Prasiolales, Chlorophyta). We were able to locate and extend highly ordered mechanical structures directly from the natural adhesive matrix of the living plant. The in vivo mechanical response of the structured biopolymer often displayed the repetitive sawtooth force-extension characteristics of a material exhibiting high mechanical strength at the molecular level. Mechanical and histological evidence leads us to propose a mechanism for mechanical strength in our sample based on amyloid fibrils. These proteinaceous, pleated ÎČ-sheet complexes are usually associated with neurodegenerative diseases. However, we now conclude that the amyloid protein quaternary structures detected in our material should be considered as a possible generic mechanism for mechanical strength in natural adhesives
Attentive Learning of Sequential Handwriting Movements: A Neural Network Model
Defense Advanced research Projects Agency and the Office of Naval Research (N00014-95-1-0409, N00014-92-J-1309); National Science Foundation (IRI-97-20333); National Institutes of Health (I-R29-DC02952-01)
Formation of dense partonic matter in relativistic nucleus-nucleus collisions at RHIC: Experimental evaluation by the PHENIX collaboration
Extensive experimental data from high-energy nucleus-nucleus collisions were
recorded using the PHENIX detector at the Relativistic Heavy Ion Collider
(RHIC). The comprehensive set of measurements from the first three years of
RHIC operation includes charged particle multiplicities, transverse energy,
yield ratios and spectra of identified hadrons in a wide range of transverse
momenta (p_T), elliptic flow, two-particle correlations, non-statistical
fluctuations, and suppression of particle production at high p_T. The results
are examined with an emphasis on implications for the formation of a new state
of dense matter. We find that the state of matter created at RHIC cannot be
described in terms of ordinary color neutral hadrons.Comment: 510 authors, 127 pages text, 56 figures, 1 tables, LaTeX. Submitted
to Nuclear Physics A as a regular article; v3 has minor changes in response
to referee comments. Plain text data tables for the points plotted in figures
for this and previous PHENIX publications are (or will be) publicly available
at http://www.phenix.bnl.gov/papers.htm
Observation of a new chi_b state in radiative transitions to Upsilon(1S) and Upsilon(2S) at ATLAS
The chi_b(nP) quarkonium states are produced in proton-proton collisions at
the Large Hadron Collider (LHC) at sqrt(s) = 7 TeV and recorded by the ATLAS
detector. Using a data sample corresponding to an integrated luminosity of 4.4
fb^-1, these states are reconstructed through their radiative decays to
Upsilon(1S,2S) with Upsilon->mu+mu-. In addition to the mass peaks
corresponding to the decay modes chi_b(1P,2P)->Upsilon(1S)gamma, a new
structure centered at a mass of 10.530+/-0.005 (stat.)+/-0.009 (syst.) GeV is
also observed, in both the Upsilon(1S)gamma and Upsilon(2S)gamma decay modes.
This is interpreted as the chi_b(3P) system.Comment: 5 pages plus author list (18 pages total), 2 figures, 1 table,
corrected author list, matches final version in Physical Review Letter
- âŠ