37 research outputs found

    Downwind Odor Predictions from Four Swine Finishing Barns Using CALPUFF

    Get PDF
    A collaborative research effort by several institutions is investigating odor emissions from swine production facilities, and the impacts of those emissions on farm neighbours. Trained human receptors were used to measure the downwind odor concentrations from four tunnel ventilated swine barns near Story City, Iowa. Twenty-six measurement events were conducted between June and November 2004 and modeled using a specially coded short time-step version of CALPUFF to predict short time step durations. Source emission measurements and extensive meteorological data were collected along with ambient olfactometry analysis using the Nasal Ranger™ device (St. Croix Sensory, St. Paul MN). Approximately 64% of measured odor generally falls within the range of modeled values. Analysis of measured odor concentration and corresponding meteorology indicate that maximum ambient odor impacts occur with lower ambient temperature during non-turbulent conditions. Analysis of the data set did not yield a strong relationship directly (R2=0.33), but a regression analysis indicated that the modified CALPUFF model yielded a slope or scaling factor of 0.99, indicating overall a good relationship between model and observed. However, when the data is tested with the Spearman’s rank correlation coefficient an rs of 0.17 was calculated, indicating a poor rank correlation and was not significant (p=0.05). Statistical analysis is inconclusive as to whether the results have bias, but indicate large error in the results. Given that there were no scaling or peak to mean ratio adjustments to the model predictions, the results are very promising for predicting odors using CALPUFF

    Ground Truthing CALPUFF and AERMOD for Odor Dispersion from Swine Barns using Ambient Odor Assessment Techniques

    Get PDF
    A collaborative research effort by several institutions investigated the dispersion of odors from a swine production facility. Trained human receptors measured downwind odor concentrations from four tunnel-ventilated swine finishing barns near Story City, Iowa, during twenty measurement events conducted between June and November 2004. Odor concentrations were modeled for short time steps using CALPUFF and AERMOD atmospheric dispersion models to compare predicted and measured odor levels. Source emission measurements and extensive micrometeorological data were collected along with ambient odor measurements using the Nasal Ranger® device (St. Croix Sensory, St. Paul MN), Mask Scentometer, odor intensity ratings, and air sample analysis by dynamic triangular forced-choice olfactometry (DTFCO). AERMOD predictions fit the odor measurements slightly better than CALPUFF with predicted concentrations being about half those predicted by CALPUFF. The Mask Scentometer and Nasal Ranger® measurements related best to the dispersion model output, and scaling factors of 3.0 for CALPUFF and 2.4 for AERMOD suggested for the Nasal Ranger® and 0.5 for the Mask Scentometer (both models). Measurements obtained using the Nasal Ranger®, Mask Scentometer, and odor intensity ratings correlated well to each other, had the strongest linear relationships, and provided slopes (measured: modeled) closest to 1.0. Converting intensity ratings to a dilution to threshold concentration did not correlate and relate as well, and this method was deemed less desirable for ambient odor assessment. Collection of ambient air samples for analysis in a olfactometry laboratory displayed poor correlations with other methods and should not be used to assess ambient odors

    Climatic and oceanic associations with daily rainfall extremes over southern Africa

    Get PDF
    Changes in climate variability and, in particular, changes in extreme climate events are likely to be of far more significance for environmentally vulnerable regions than changes in the mean state. It is generally accepted that sea-surface temperatures (SSTs) play an important role in modulating rainfall variability. Consequently, SSTs can be prescribed in global and regional climate modelling in order to study the physical mechanisms behind rainfall and its extremes. Using a satellite-based daily rainfall historical data set, this paper describes the main patterns of rainfall variability over southern Africa, identifies the dates when extreme rainfall occurs within these patterns, and shows the effect of resolution in trying to identify the location and intensity of SST anomalies associated with these extremes in the Atlantic and southwest Indian Ocean. Derived from a Principal Component Analysis (PCA), the results also suggest that, for the spatial pattern accounting for the highest amount of variability, extremes extracted at a higher spatial resolution do give a clearer indication regarding the location and intensity of anomalous SST regions. As the amount of variability explained by each spatial pattern defined by the PCA decreases, it would appear that extremes extracted at a lower resolution give a clearer indication of anomalous SST regions

    Variability of moisture sources in the Mediterranean region during the period 1980-2000

    Get PDF
    In this study, seasonal and interannual variability of the main atmospheric moisture sources over eight regions in the Mediterranean basin were investigated along a 21 year period. The Lagrangian dispersion model FLEXPART, developed by Stohl and James [2004, 2005], was applied to identify the contribution of humidity to the moisture budget of each region. This methodology is used to compute budgets of evaporation minus precipitation (E-P) by calculating changes in the specific humidity along backward trajectories, for the preceding 10 day periods. The results show clear seasonal differences in the moisture sources between wet and dry seasons. The Western Mediterranean Sea is the dominant moisture source for almost all the regions in the Mediterranean basin during the wet season, while the local net evaporation dominates during the dry season. The highest interannual variability is found in contributions to the Iberian Peninsula, Italy, and the Eastern Mediterranean. It is seen that the role of teleconnections is more limited than for the precipitation recorded in the region

    The role of regional circulation features in regulating El Niño climate impacts over southern Africa: a comparison of the 2015/16 drought with previous events

    Get PDF
    Extremely dry conditions were experienced across most of southern Africa during the austral summer (October-March) of 2015/16, associated with one of the strongest observed El Niño events in the Pacific. Dry conditions peaked in the early austral summer months (October-December) producing the most intense drought in the 116 year historical record, as measured by the intensity of the Standardized Precipitation Index across all spatial scales up to the sub-continental. We estimate the return period of this extreme early summer drought to be greater than 200 years. The interior and eastern parts of South Africa were particularly hard-hit with station data showing rainfall totals being at their lowest since at least 1950. The early summer dry conditions make the 2015/16 event atypical compared to past El Niño events of similar magnitude. We find that key regional circulation patterns, influenced by planetary scale processes, play an important role in modulating the spatial and temporal evolution of the summer rainfall during these El Niño events. Specifically, (i) the Angola Low and the South Indian Ocean High, two dominant low level circulation features that drive moisture convergence to support convective precipitation in the region, were anomalously weakened in early austral summer of 2015/16 resulting in less moisture being transported over the continent, and (ii) the mid-level Botswana High was stronger than in previous El Niño years further producing unfavourable conditions for rainfall through stronger subsidence in the mid- to upper levels over southern Africa

    Precipitation Origins and Key Drivers of Precipitation Isotope (18O, 2H, and 17O) Compositions Over Windhoek

    Get PDF
    ©2018. American Geophysical Union. All Rights Reserved. Southern African climate is characterized by large precipitation variability, and model precipitation estimates can vary by 70% during summer. This may be partly attributed to underestimation and lack of knowledge of the exact influence of the Atlantic Ocean on precipitation over the region. The current study models trajectories of precipitation events sampled from Windhoek (2012–2016), coupled with isotopes (δ18O, δ2H, δ17O, d, and δ′17O-δ′18O) to determine key local drivers of isotope compositions as well as infer source evaporative conditions. Multiple linear regression analyses suggest that key drivers of isotope compositions (relative humidity, precipitation amount, and air temperature) account for 47–53% of δ18O, δ2H, and δ17O variability. Surprisingly, precipitation δ18O, δ2H, and δ17O were independent of precipitation type (stratiform versus convective), and this may be attributed to greater modification of stratiform compared to convective raindrops, leading to convergence of isotopes from these precipitation types. Trajectory analyses showed that 78% and 21% of precipitation events during the period originated from the Indian and South Atlantic Oceans, respectively. Although precipitation from the Atlantic Ocean was significantly enriched compared to that from the Indian Ocean (

    Oceanic and terrestrial sources of continental precipitation

    Get PDF
    Author Posting. © American Geophysical Union, 2012. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Reviews of Geophysics 50 (2012): RG4003, doi:10.1029/2012RG000389.The most important sources of atmospheric moisture at the global scale are herein identified, both oceanic and terrestrial, and a characterization is made of how continental regions are influenced by water from different moisture source regions. The methods used to establish source-sink relationships of atmospheric water vapor are reviewed, and the advantages and caveats associated with each technique are discussed. The methods described include analytical and box models, numerical water vapor tracers, and physical water vapor tracers (isotopes). In particular, consideration is given to the wide range of recently developed Lagrangian techniques suitable both for evaluating the origin of water that falls during extreme precipitation events and for establishing climatologies of moisture source-sink relationships. As far as oceanic sources are concerned, the important role of the subtropical northern Atlantic Ocean provides moisture for precipitation to the largest continental area, extending from Mexico to parts of Eurasia, and even to the South American continent during the Northern Hemisphere winter. In contrast, the influence of the southern Indian Ocean and North Pacific Ocean sources extends only over smaller continental areas. The South Pacific and the Indian Ocean represent the principal source of moisture for both Australia and Indonesia. Some landmasses only receive moisture from the evaporation that occurs in the same hemisphere (e.g., northern Europe and eastern North America), while others receive moisture from both hemispheres with large seasonal variations (e.g., northern South America). The monsoonal regimes in India, tropical Africa, and North America are provided with moisture from a large number of regions, highlighting the complexities of the global patterns of precipitation. Some very important contributions are also seen from relatively small areas of ocean, such as the Mediterranean Basin (important for Europe and North Africa) and the Red Sea, which provides water for a large area between the Gulf of Guinea and Indochina (summer) and between the African Great Lakes and Asia (winter). The geographical regions of Eurasia, North and South America, and Africa, and also the internationally important basins of the Mississippi, Amazon, Congo, and Yangtze Rivers, are also considered, as is the importance of terrestrial sources in monsoonal regimes. The role of atmospheric rivers, and particularly their relationship with extreme events, is discussed. Droughts can be caused by the reduced supply of water vapor from oceanic moisture source regions. Some of the implications of climate change for the hydrological cycle are also reviewed, including changes in water vapor concentrations, precipitation, soil moisture, and aridity. It is important to achieve a combined diagnosis of moisture sources using all available information, including stable water isotope measurements. A summary is given of the major research questions that remain unanswered, including (1) the lack of a full understanding of how moisture sources influence precipitation isotopes; (2) the stationarity of moisture sources over long periods; (3) the way in which possible changes in intensity (where evaporation exceeds precipitation to a greater of lesser degree), and the locations of the sources, (could) affect the distribution of continental precipitation in a changing climate; and (4) the role played by the main modes of climate variability, such as the North Atlantic Oscillation or the El Niño–Southern Oscillation, in the variability of the moisture source regions, as well as a full evaluation of the moisture transported by low-level jets and atmospheric rivers.Luis Gimeno would like to thank the Spanish Ministry of Science and FEDER for their partial funding of this research through the project MSM. A. Stohl was supported by the Norwegian Research Council within the framework of the WATER‐SIP project. The work of Ricardo Trigo was partially supported by the FCT (Portugal) through the ENAC project (PTDC/AAC-CLI/103567/2008).2013-05-0

    The dynamics and energetics of tropical temperate troughs over Southern Africa

    No full text
    Water vapour content and transport over southern Africa and adjacent oceans are examined. Early summer rainfall over the northern and central interior of South Africa tends to be associated with baroclinic controls whereas late-summer rainfall is barotropic in origin. This is reflected in the northwesterly water vapour transport from an Atlantic Ocean source by middle and upper tropospheric westerly waves in early summer. A thermally indirect Ferrel cell, indicated-from energetics, COpIU1nSthe· temperate nature of the early-summer atmosphere over southern Africa. Late summer water vapour transport, in contrast, is strongly from the tropics, with' a reduced eddy component, indicating an important tropical control on late SUmmerrainfall especially in terms of fluctuations in the position of the ascending limb of .the Walker cell Over southern Africa. The Hadley cell is of importance to the late summer rainfall in that dry (wet) years are associated with an anomalous cell OVereastern (central) South Africa such that low level vapour transport is southerly (northerly). The anticyclone over the eastern parts of southern Africa, coupled with. a trough over the interior (especially at the 700 hPa pressure level), is important for the introduction of water vapour over the subcontinent in wet and dry years and for tropical-temperate trough case studies. Water vapour source regions differ from early summer (Atlantic Ocean) to late summer (Indian Ocean), which reflects the temperate. control on early and the tropical control on late summer circulation. The convergence of water vapour over southern Africa in wet years and during tropical-temperate troughs is not only important for cloud formation and precipitation, but also for latent heat release associated with convergent water vapour. Diabatic heating decreases the stability of the tropical atmosphere thereby resulting in increased vertical motion. It also forces an anomalous Badley circulation during wet late summers and tropical-temperate trough .cases as a result of complex energy transformations. Heating increases eddy available potential energy which is converted to zonal available potential energy by a thermally indirect circulation found in the tropics. The zonal potential energy is then converted to kinetic energy by the thermally direct Badley cell. Water vapour and its variations are thus important for the precipitation, heating and SUbsequent energy of the subtropical southern African atmosphere,MN (2017

    The dynamics and energetics of tropical-temperature troughs over Southern Africa

    No full text
    Water vapour content and transport over southern Africa and adjacent oceans are examined. Early summer rainfall over the northern and central interior of South Africa tends to be associated with baroclinic controls whereas late-summer rainfall is barotropic in origin. This is reflected in the northwesterly water vapour transport from an Atlantic Ocean source by middle and upper tropospheric westerly waves in early summer. A thermally indirect Ferrel cell, indicated-from energetics, COpIU1nSthe· temperate nature of the early-summer atmosphere over southern Africa. Late summer water vapour transport, in contrast, is strongly from the tropics, with' a reduced eddy component, indicating an important tropical control on late SUmmerrainfall especially in terms of fluctuations in the position of the ascending limb of .the Walker cell Over southern Africa. The Hadley cell is of importance to the late summer rainfall in that dry (wet) years are associated with an anomalous cell OVereastern (central) South Africa such that low level vapour transport is southerly (northerly). The anticyclone over the eastern parts of southern Africa, coupled with. a trough over the interior (especially at the 700 hPa pressure level), is important for the introduction of water vapour over the subcontinent in wet and dry years and for tropical-temperate trough case studies. Water vapour source regions differ from early summer (Atlantic Ocean) to late summer (Indian Ocean), which reflects the temperate. control on early and the tropical control on late summer circulation. The convergence of water vapour over southern Africa in wet years and during tropical-temperate troughs is not only important for cloud formation and precipitation, but also for latent heat release associated with convergent water vapour. Diabatic heating decreases the stability of the tropical atmosphere thereby resulting in increased vertical motion. It also forces an anomalous Badley circulation during wet late summers and tropical-temperate trough .cases as a result of complex energy transformations. Heating increases eddy available potential energy which is converted to zonal available potential energy by a thermally indirect circulation found in the tropics. The zonal potential energy is then converted to kinetic energy by the thermally direct Badley cell. Water vapour and its variations are thus important for the precipitation, heating and SUbsequent energy of the subtropical southern African atmosphere,GR 201

    Downwind Odor Predictions from Four Swine Finishing Barns Using CALPUFF

    No full text
    A collaborative research effort by several institutions is investigating odor emissions from swine production facilities, and the impacts of those emissions on farm neighbours. Trained human receptors were used to measure the downwind odor concentrations from four tunnel ventilated swine barns near Story City, Iowa. Twenty-six measurement events were conducted between June and November 2004 and modeled using a specially coded short time-step version of CALPUFF to predict short time step durations. Source emission measurements and extensive meteorological data were collected along with ambient olfactometry analysis using the Nasal Ranger™ device (St. Croix Sensory, St. Paul MN). Approximately 64% of measured odor generally falls within the range of modeled values. Analysis of measured odor concentration and corresponding meteorology indicate that maximum ambient odor impacts occur with lower ambient temperature during non-turbulent conditions. Analysis of the data set did not yield a strong relationship directly (R2=0.33), but a regression analysis indicated that the modified CALPUFF model yielded a slope or scaling factor of 0.99, indicating overall a good relationship between model and observed. However, when the data is tested with the Spearman’s rank correlation coefficient an rs of 0.17 was calculated, indicating a poor rank correlation and was not significant (p=0.05). Statistical analysis is inconclusive as to whether the results have bias, but indicate large error in the results. Given that there were no scaling or peak to mean ratio adjustments to the model predictions, the results are very promising for predicting odors using CALPUFF.This proceeding is from International Symposium on Air Quality and Waste Management for Agriculture, 16-19 September 2007, Broomfield, Colorado 701P0907cd.</p
    corecore