20 research outputs found
Global, regional, and national incidence, prevalence, and years lived with disability for 328 diseases and injuries for 195 countries, 1990–2016: a systematic analysis for the Global Burden of Disease Study 2016
As mortality rates decline, life expectancy increases, and populations age, non-fatal outcomes of diseases and injuries are becoming a larger component of the global burden of disease. The Global Burden of Diseases, Injuries, and Risk Factors Study 2016 (GBD 2016) provides a comprehensive assessment of prevalence, incidence, and years lived with disability (YLDs) for 328 causes in 195 countries and territories from 1990 to 2016
Burden of disease scenarios for 204 countries and territories, 2022–2050: a forecasting analysis for the Global Burden of Disease Study 2021
Background: Future trends in disease burden and drivers of health are of great interest to policy makers and the public at large. This information can be used for policy and long-term health investment, planning, and prioritisation. We have expanded and improved upon previous forecasts produced as part of the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) and provide a reference forecast (the most likely future), and alternative scenarios assessing disease burden trajectories if selected sets of risk factors were eliminated from current levels by 2050. Methods: Using forecasts of major drivers of health such as the Socio-demographic Index (SDI; a composite measure of lag-distributed income per capita, mean years of education, and total fertility under 25 years of age) and the full set of risk factor exposures captured by GBD, we provide cause-specific forecasts of mortality, years of life lost (YLLs), years lived with disability (YLDs), and disability-adjusted life-years (DALYs) by age and sex from 2022 to 2050 for 204 countries and territories, 21 GBD regions, seven super-regions, and the world. All analyses were done at the cause-specific level so that only risk factors deemed causal by the GBD comparative risk assessment influenced future trajectories of mortality for each disease. Cause-specific mortality was modelled using mixed-effects models with SDI and time as the main covariates, and the combined impact of causal risk factors as an offset in the model. At the all-cause mortality level, we captured unexplained variation by modelling residuals with an autoregressive integrated moving average model with drift attenuation. These all-cause forecasts constrained the cause-specific forecasts at successively deeper levels of the GBD cause hierarchy using cascading mortality models, thus ensuring a robust estimate of cause-specific mortality. For non-fatal measures (eg, low back pain), incidence and prevalence were forecasted from mixed-effects models with SDI as the main covariate, and YLDs were computed from the resulting prevalence forecasts and average disability weights from GBD. Alternative future scenarios were constructed by replacing appropriate reference trajectories for risk factors with hypothetical trajectories of gradual elimination of risk factor exposure from current levels to 2050. The scenarios were constructed from various sets of risk factors: environmental risks (Safer Environment scenario), risks associated with communicable, maternal, neonatal, and nutritional diseases (CMNNs; Improved Childhood Nutrition and Vaccination scenario), risks associated with major non-communicable diseases (NCDs; Improved Behavioural and Metabolic Risks scenario), and the combined effects of these three scenarios. Using the Shared Socioeconomic Pathways climate scenarios SSP2-4.5 as reference and SSP1-1.9 as an optimistic alternative in the Safer Environment scenario, we accounted for climate change impact on health by using the most recent Intergovernmental Panel on Climate Change temperature forecasts and published trajectories of ambient air pollution for the same two scenarios. Life expectancy and healthy life expectancy were computed using standard methods. The forecasting framework includes computing the age-sex-specific future population for each location and separately for each scenario. 95% uncertainty intervals (UIs) for each individual future estimate were derived from the 2·5th and 97·5th percentiles of distributions generated from propagating 500 draws through the multistage computational pipeline. Findings: In the reference scenario forecast, global and super-regional life expectancy increased from 2022 to 2050, but improvement was at a slower pace than in the three decades preceding the COVID-19 pandemic (beginning in 2020). Gains in future life expectancy were forecasted to be greatest in super-regions with comparatively low life expectancies (such as sub-Saharan Africa) compared with super-regions with higher life expectancies (such as the high-income super-region), leading to a trend towards convergence in life expectancy across locations between now and 2050. At the super-region level, forecasted healthy life expectancy patterns were similar to those of life expectancies. Forecasts for the reference scenario found that health will improve in the coming decades, with all-cause age-standardised DALY rates decreasing in every GBD super-region. The total DALY burden measured in counts, however, will increase in every super-region, largely a function of population ageing and growth. We also forecasted that both DALY counts and age-standardised DALY rates will continue to shift from CMNNs to NCDs, with the most pronounced shifts occurring in sub-Saharan Africa (60·1% [95% UI 56·8–63·1] of DALYs were from CMNNs in 2022 compared with 35·8% [31·0–45·0] in 2050) and south Asia (31·7% [29·2–34·1] to 15·5% [13·7–17·5]). This shift is reflected in the leading global causes of DALYs, with the top four causes in 2050 being ischaemic heart disease, stroke, diabetes, and chronic obstructive pulmonary disease, compared with 2022, with ischaemic heart disease, neonatal disorders, stroke, and lower respiratory infections at the top. The global proportion of DALYs due to YLDs likewise increased from 33·8% (27·4–40·3) to 41·1% (33·9–48·1) from 2022 to 2050, demonstrating an important shift in overall disease burden towards morbidity and away from premature death. The largest shift of this kind was forecasted for sub-Saharan Africa, from 20·1% (15·6–25·3) of DALYs due to YLDs in 2022 to 35·6% (26·5–43·0) in 2050. In the assessment of alternative future scenarios, the combined effects of the scenarios (Safer Environment, Improved Childhood Nutrition and Vaccination, and Improved Behavioural and Metabolic Risks scenarios) demonstrated an important decrease in the global burden of DALYs in 2050 of 15·4% (13·5–17·5) compared with the reference scenario, with decreases across super-regions ranging from 10·4% (9·7–11·3) in the high-income super-region to 23·9% (20·7–27·3) in north Africa and the Middle East. The Safer Environment scenario had its largest decrease in sub-Saharan Africa (5·2% [3·5–6·8]), the Improved Behavioural and Metabolic Risks scenario in north Africa and the Middle East (23·2% [20·2–26·5]), and the Improved Nutrition and Vaccination scenario in sub-Saharan Africa (2·0% [–0·6 to 3·6]). Interpretation: Globally, life expectancy and age-standardised disease burden were forecasted to improve between 2022 and 2050, with the majority of the burden continuing to shift from CMNNs to NCDs. That said, continued progress on reducing the CMNN disease burden will be dependent on maintaining investment in and policy emphasis on CMNN disease prevention and treatment. Mostly due to growth and ageing of populations, the number of deaths and DALYs due to all causes combined will generally increase. By constructing alternative future scenarios wherein certain risk exposures are eliminated by 2050, we have shown that opportunities exist to substantially improve health outcomes in the future through concerted efforts to prevent exposure to well established risk factors and to expand access to key health interventions
Measuring the health-related Sustainable Development Goals in 188 countries : a baseline analysis from the Global Burden of Disease Study 2015
Background In September, 2015, the UN General Assembly established the Sustainable Development Goals (SDGs). The SDGs specify 17 universal goals, 169 targets, and 230 indicators leading up to 2030. We provide an analysis of 33 health-related SDG indicators based on the Global Burden of Diseases, Injuries, and Risk Factors Study 2015 (GBD 2015). Methods We applied statistical methods to systematically compiled data to estimate the performance of 33 health-related SDG indicators for 188 countries from 1990 to 2015. We rescaled each indicator on a scale from 0 (worst observed value between 1990 and 2015) to 100 (best observed). Indices representing all 33 health-related SDG indicators (health-related SDG index), health-related SDG indicators included in the Millennium Development Goals (MDG index), and health-related indicators not included in the MDGs (non-MDG index) were computed as the geometric mean of the rescaled indicators by SDG target. We used spline regressions to examine the relations between the Socio-demographic Index (SDI, a summary measure based on average income per person, educational attainment, and total fertility rate) and each of the health-related SDG indicators and indices. Findings In 2015, the median health-related SDG index was 59.3 (95% uncertainty interval 56.8-61.8) and varied widely by country, ranging from 85.5 (84.2-86.5) in Iceland to 20.4 (15.4-24.9) in Central African Republic. SDI was a good predictor of the health-related SDG index (r(2) = 0.88) and the MDG index (r(2) = 0.2), whereas the non-MDG index had a weaker relation with SDI (r(2) = 0.79). Between 2000 and 2015, the health-related SDG index improved by a median of 7.9 (IQR 5.0-10.4), and gains on the MDG index (a median change of 10.0 [6.7-13.1]) exceeded that of the non-MDG index (a median change of 5.5 [2.1-8.9]). Since 2000, pronounced progress occurred for indicators such as met need with modern contraception, under-5 mortality, and neonatal mortality, as well as the indicator for universal health coverage tracer interventions. Moderate improvements were found for indicators such as HIV and tuberculosis incidence, minimal changes for hepatitis B incidence took place, and childhood overweight considerably worsened. Interpretation GBD provides an independent, comparable avenue for monitoring progress towards the health-related SDGs. Our analysis not only highlights the importance of income, education, and fertility as drivers of health improvement but also emphasises that investments in these areas alone will not be sufficient. Although considerable progress on the health-related MDG indicators has been made, these gains will need to be sustained and, in many cases, accelerated to achieve the ambitious SDG targets. The minimal improvement in or worsening of health-related indicators beyond the MDGs highlight the need for additional resources to effectively address the expanded scope of the health-related SDGs.Peer reviewe
Functional similarities in spatial representations between real and virtual environments
The two experiments in this paper demonstrate similarities in what people know about the spatial layout of objects in familiar places whether their knowledge resulted from exploring the physical environment on foot or exploring a virtual rendering of it with a tethered head-mounted display. In both experiments subjects were asked to study the locations of eight targets in the physical or virtual environment, then close their eyes, walk (or imagine walking) to a new point of observation, and then turn and face some of the remembered objects. In Experiment 1 the results of the statistical analysis were functionally similar after learning by exploring the virtual environment and physical environment: The new points of observation were simple rotations of the point where they were learned. Like exploring the physical environment, the latencies and errors of the turning judgments after learning the virtual environment were significantly worse after the imagined movements than the physical movements; and the measures were worse for larger degrees of physical or imagined rotation in both conditions. In Experiment 2 the new points of observation differed by simple rotations in one condition versus simple translations in the other condition and again the results were functionally similar after learning the physical versus the virtual environment: In both learning conditions, the errors and latencies in the physical and virtual environments were worse after rotations than translation and varied as a function of the disparity of the direction when learning and the direction when responding
TeachBot: Towards teaching robotics fundamentals for human-robot collaboration at work
The shortage of skilled workers who can use robots is a crucial issue hampering the growth of manufacturing industries. We present a new type of workforce training system, TeachBot, in which a robotic instructor delivers a series of interactive lectures using graphics and physical demonstration of its arm movements. Furthermore, the TeachBot allows learners to physically interact with the robot. This new human-computer interface, integrating oral and graphical instructions with motion demonstration and physical touch, enables to create engaging training materials. Effective learning takes place when the learner simultaneously interacts with an embodiment of new knowledge. We apply this "Learning by Touching" methodology to teach basic concepts, e.g. how a shaft encoder and feedback control work. In a pilot randomized control test with a small number of human subjects, we find suggestive evidence that Learning by Touching enhances learning effectiveness in this robotic context for adult learners. Students whose learning experience included touching the robot as opposed to watching it delivers the lessons showed gains in their ability to integrate knowledge about robotics. The "touching" group showed statistically significant gains in self-efficacy, which is an important antecedent to further learning and successful use of new technologies, as well as gains in knowledge about robotic concepts that trend toward significance
A No-Prophylaxis Platelet-Transfusion Strategy for Hematologic Cancers
BACKGROUND: The effectiveness of platelet transfusions to prevent bleeding in patients with hematologic cancers remains unclear. This trial assessed whether a policy of not giving prophylactic platelet transfusions was as effective and safe as a policy of providing prophylaxis. METHODS: We conducted this randomized, open-label, noninferiority trial at 14 centers in the United Kingdom and Australia. Patients were randomly assigned to receive, or not to receive, prophylactic platelet transfusions when morning platelet counts were less than 10×10(9) per liter. Eligible patients were persons 16 years of age or older who were receiving chemotherapy or undergoing stem-cell transplantation and who had or were expected to have thrombocytopenia. The primary end point was bleeding of World Health Organization (WHO) grade 2, 3, or 4 up to 30 days after randomization. RESULTS: A total of 600 patients (301 in the no-prophylaxis group and 299 in the prophylaxis group) underwent randomization between 2006 and 2011. Bleeding of WHO grade 2, 3, or 4 occurred in 151 of 300 patients (50%) in the no-prophylaxis group, as compared with 128 of 298 (43%) in the prophylaxis group (adjusted difference in proportions, 8.4 percentage points; 90% confidence interval, 1.7 to 15.2; P=0.06 for noninferiority). Patients in the no-prophylaxis group had more days with bleeding and a shorter time to the first bleeding episode than did patients in the prophylaxis group. Platelet use was markedly reduced in the no-prophylaxis group. A prespecified subgroup analysis identified similar rates of bleeding in the two study groups among patients undergoing autologous stem-cell transplantation. CONCLUSIONS: The results of our study support the need for the continued use of prophylaxis with platelet transfusion and show the benefit of such prophylaxis for reducing bleeding, as compared with no prophylaxis. A significant number of patients had bleeding despite prophylaxis. (Funded by the National Health Service Blood and Transplant Research and Development Committee and the Australian Red Cross Blood Service; TOPPS Controlled-Trials.com number, ISRCTN08758735.)