205 research outputs found

    Prospects for Food Fermentation in South-East Asia, Topics From the Tropical Fermentation and Biotechnology Network at the End of the AsiFood Erasmus+Project

    Get PDF
    Fermentation has been used for centuries to produce food in South-East Asia and some foods of this region are famous in the whole world. However, in the twenty first century, issues like food safety and quality must be addressed in a world changing from local business to globalization. In Western countries, the answer to these questions has been made through hygienisation, generalization of the use of starters, specialization of agriculture and use of long-distance transportation. This may have resulted in a loss in the taste and typicity of the products, in an extensive use of antibiotics and other chemicals and eventually, in a loss in the confidence of consumers to the products. The challenges awaiting fermentation in South-East Asia are thus to improve safety and quality in a sustainable system producing tasty and typical fermented products and valorising by-products. At the end of the “AsiFood Erasmus+ project” (www.asifood.org), the goal of this paper is to present and discuss these challenges as addressed by the Tropical Fermentation Network, a group of researchers from universities, research centers and companies in Asia and Europe. This paper presents current actions and prospects on hygienic, environmental, sensorial and nutritional qualities of traditional fermented food including screening of functional bacteria and starters, food safety strategies, research for new antimicrobial compounds, development of more sustainable fermentations and valorisation of by-products. A specificity of this network is also the multidisciplinary approach dealing with microbiology, food, chemical, sensorial, and genetic analyses, biotechnology, food supply chain, consumers and ethnology

    Observation of the diphoton decay of the Higgs boson and measurement of its properties

    Get PDF
    Peer reviewe

    Search for additional heavy neutral Higgs and gauge bosons in the ditau final state produced in 36 fb−1 of pp collisions at √s=13 TeV with the ATLAS detector

    Get PDF
    A search for heavy neutral Higgs bosons and Zâ€Č bosons is performed using a data sample corresponding to an integrated luminosity of 36.1 fb−1 from proton-proton collisions at √s=13 TeV recorded by the ATLAS detector at the LHC during 2015 and 2016. The heavy resonance is assumed to decay to τ+τ− with at least one tau lepton decaying to final states with hadrons and a neutrino. The search is performed in the mass range of 0.2-2.25 TeV for Higgs bosons and 0.2-4.0 TeV for Zâ€Č bosons. The data are in good agreement with the background predicted by the Standard Model. The results are interpreted in benchmark scenarios. In the context of the hMSSM scenario, the data exclude tan ÎČ > 1.0 for mA= 0.25 TeV and tan ÎČ > 42 for mA=1.5 TeV at the 95% confidence level. For the Sequential Standard Model, ZSSMâ€Č with mZâ€Č< 2.42 TeV is excluded at 95% confidence level, while Z NUâ€Č with mZ â€Č < 2.25 TeV is excluded for the non-universal G(221) model that exhibits enhanced couplings to third-generation fermions

    Search for gravitational waves from Scorpius X-1 in the second Advanced LIGO observing run with an improved hidden Markov model

    Get PDF
    We present results from a semicoherent search for continuous gravitational waves from the low-mass x-ray binary Scorpius X-1, using a hidden Markov model (HMM) to track spin wandering. This search improves on previous HMM-based searches of LIGO data by using an improved frequency domain matched filter, the J-statistic, and by analyzing data from Advanced LIGO's second observing run. In the frequency range searched, from 60 to 650 Hz, we find no evidence of gravitational radiation. At 194.6 Hz, the most sensitive search frequency, we report an upper limit on gravitational wave strain (at 95% confidence) of h095%=3.47×10-25 when marginalizing over source inclination angle. This is the most sensitive search for Scorpius X-1, to date, that is specifically designed to be robust in the presence of spin wandering. © 2019 American Physical Society
    • 

    corecore