205 research outputs found

    The immunobiology and clinical management of acute graft versus host disease after allogeneic transplant

    Full text link
    Alloreactivity between donor cells against disparate host tissue is a natural and normal physiologic phenomenon after engraftment. Consequently, GVHD is a universally expected side effect after allogeneic HSCT. An effective strategy to prevent severe or fatal acute GVHD is require if the transplant is to be successful. The HSCT field has witnessed significant progress in the prevention and treatment of acute GVHD. However, select interventions come at the cost of losing the alloimmune activity that prevents relapse, the GVL effect, as many of the mechanisms which cause GVHD are shared with those responsible for GVL. Current efforts are focused on therapeutic interventions that not only alleviate the burden of acute GVHD but does so in a way that maintains the GVL effect. This review will provide an up-to-date overview of our current understanding of the diagnosis, risk stratification, immunobiology of acute GVHD, summarize efforts to prevent and treat the disease, and provide a perspective on future directions

    RECQ1 expression is upregulated in response to DNA damage and in a p53-dependent manner

    Get PDF
    Sensitivity of cancer cells to DNA damaging chemotherapeutics is determined by DNA repair processes. Consequently, cancer cells may upregulate the expression of certain DNA repair genes as a mechanism to promote chemoresistance. Here, we report that RECQ1, a breast cancer susceptibility gene that encodes the most abundant RecQ helicase in humans, is a p53-regulated gene, potentially acting as a defense against DNA damaging agents. We show that RECQ1 mRNA and protein levels are upregulated upon treatment of cancer cells with a variety of DNA damaging agents including the DNA-alkylating agent methylmethanesulfonate (MMS). The MMS-induced upregulation of RECQ1 expression is p53-dependent as it was observed in p53-proficient but not in isogenic p53-deficient cells. The RECQ1 promoter is bound by endogenous p53 and is responsive to p53 in luciferase reporter assays suggesting that RECQ1 is a direct target of p53. Treatment with the chemotherapeutic drugs temozolomide and fotemustine also increased RECQ1 mRNA levels whereas depletion of RECQ1 enhanced cellular sensitivity to these agents. These results identify a previously unrecognized p53-mediated upregulation of RECQ1 expression in response to DNA damage and implicate RECQ1 in the repair of DNA lesions including those induced by alkylating and other chemotherapeutic agents

    Human Monocytes Undergo Excessive Apoptosis following Temozolomide Activating the ATM/ATR Pathway While Dendritic Cells and Macrophages Are Resistant

    Get PDF
    Immunodeficiency is a severe therapy-limiting side effect of anticancer chemotherapy resulting from sensitivity of immunocompetent cells to DNA damaging agents. A central role in the immune system is played by monocytes that differentiate into macrophages and dendritic cells (DCs). In this study we compared human monocytes isolated from peripheral blood and cytokine matured macrophages and DCs derived from them and assessed the mechanism of toxicity of the DNA methylating anticancer drug temozolomide (TMZ) in these cell populations. We observed that monocytes, but not DCs and macrophages, were highly sensitive to the killing effect of TMZ. Studies on DNA damage and repair revealed that the initial DNA incision was efficient in monocytes while the re-ligation step of base excision repair (BER) can not be accomplished, resulting in an accumulation of DNA single-strand breaks (SSBs). Furthermore, monocytes accumulated DNA double-strand breaks (DSBs) following TMZ treatment, while DCs and macrophages were able to repair DSBs. Monocytes lack the DNA repair proteins XRCC1, ligase IIIα and PARP-1 whose expression is restored during differentiation into macrophages and DCs following treatment with GM-CSF and GM-CSF plus IL-4, respectively. These proteins play a key role both in BER and DSB repair by B-NHEJ, which explains the accumulation of DNA breaks in monocytes following TMZ treatment. Although TMZ provoked an upregulation of XRCC1 and ligase IIIα, BER was not enhanced likely because PARP-1 was not upregulated. Accordingly, inhibition of PARP-1 did not sensitize monocytes, but monocyte-derived DCs in which strong PARP activation was observed. TMZ induced in monocytes the DNA damage response pathways ATM-Chk2 and ATR-Chk1 resulting in p53 activation. Finally, upon activation of the Fas-receptor and the mitochondrial pathway apoptosis was executed in a caspase-dependent manner. The downregulation of DNA repair in monocytes, resulting in their selective killing by TMZ, might impact on the immune response during cancer chemotherapy

    Temozolomide- and fotemustine-induced apoptosis in human malignant melanoma cells: response related to MGMT, MMR, DSBs, and p53

    Get PDF
    Malignant melanomas are highly resistant to chemotherapy. First-line chemotherapeutics used in melanoma therapy are the methylating agents dacarbazine (DTIC) and temozolomide (TMZ) and the chloroethylating agents BCNU and fotemustine. Here, we determined the mode of cell death in 11 melanoma cell lines upon exposure to TMZ and fotemustine. We show for the first time that TMZ induces apoptosis in melanoma cells, using therapeutic doses. For both TMZ and fotemustine apoptosis is the dominant mode of cell death. The contribution of necrosis to total cell death varied between 10 and 40%. The O6-methylguanine-DNA methyltransferase (MGMT) activity in the cell lines was between 0 and 1100 fmol mg−1 protein, and there was a correlation between MGMT activity and the level of resistance to TMZ and fotemustine. MGMT inactivation by O6-benzylguanine sensitized all melanoma cell lines expressing MGMT to TMZ and fotemustine-induced apoptosis, and MGMT transfection attenuated the apoptotic response. This supports that O6-alkylguanines are critical lesions involved in the initiation of programmed melanoma cell death. One of the cell lines (MZ7), derived from a patient subjected to DTIC therapy, exhibited a high level of resistance to TMZ without expressing MGMT. This was related to an impaired expression of MSH2 and MSH6. The cells were not cross-resistant to fotemustine. Although these data indicate that methylating drug resistance of melanoma cells can be acquired by down-regulation of mismatch repair, a correlation between MSH2 and MSH6 expression in the different lines and TMZ sensitivity was not found. Apoptosis in melanoma cells induced by TMZ and fotemustine was accompanied by double-strand break (DSB) formation (as determined by H2AX phosphorylation) and caspase-3 and -7 activation as well as PARP cleavage. For TMZ, DSBs correlated significantly with the apoptotic response, whereas for fotemustine a correlation was not found. Melanoma lines expressing p53 wild-type were more resistant to TMZ and fotemustine than p53 mutant melanoma lines, which is in marked contrast to previous data reported for glioma cells treated with TMZ. Overall, the findings are in line with the model that in melanoma cells TMZ-induced O6-methylguanine triggers the apoptotic (and necrotic) pathway through DSBs, whereas for chloroethylating agents apoptosis is triggered in a more complex manner

    Chemotherapeutic effect of a novel temozolomide analog on nasopharyngeal carcinoma in vitro and in vivo

    Get PDF
    BACKGROUND: Many patients with nasopharyngeal carcinoma (NPC) face poor prognosis. Due to its hidden anatomical location, the tumor is usually diagnosed quite late, and despite initially successful treatment with radiation and cisplatin, many patients will relapse and succumb to the disease. New treatment options are urgently needed. We have performed preclinical studies to evaluate the potential NPC therapeutic activity of a newly developed analog of temozolomide (TMZ), an alkylating agent that is the current chemotherapeutic standard of care for patients with malignant glioma. RESULTS: TMZ was covalently conjugated to the natural monoterpene perillyl alcohol (POH), creating the novel fusion compound NEO212. Its impact on two NPC cell lines was studied through colony formation assays, cell death ELISA, immunoblots, and in vivo testing in tumor-bearing mice. In vitro, NEO212 effectively triggered tumor cell death, and its potency was significantly greater than that of its individual components, TMZ or POH alone. Intriguingly, merely mixing TMZ with POH also was unable to achieve the superior potency of the conjugated compound NEO212. Treatment of NPC cells with NEO212 inactivated the chemoprotective DNA repair protein MGMT (O6-methylguanine methyltransferase), resulting in significant chemosensitization of cells to a second round of drug treatment. When tested in vivo, NEO212 reduced tumor growth in treated animals. CONCLUSION: Our results demonstrate anticancer activity of NEO212 in preclinical NPC models, suggesting that this novel compound should be evaluated further for the treatment of patients with NPC. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12929-015-0175-6) contains supplementary material, which is available to authorized users

    A phase I study of extended dosing with lomeguatrib with temozolomide in patients with advanced melanoma

    Get PDF
    Lomeguatrib, an O6-methylguanine-DNA methyltransferase inactivator, was evaluated in an extended dosing regimen with temozolomide, designed according to pharmacodynamic data from previous studies. Patients with unresectable stage 3 or 4 cutaneous or unknown primary melanoma metastases were treated with lomeguatrib 40 mg, b.i.d. for 10 or 14 days and temozolomide 75–100 mg m−2 on days 1–5. Drugs were administered orally with cycles repeated every 28 days, for up to six cycles. A total of 32 patients were recruited to the study. Lomeguatrib for 10 days with temozolomide 75 mg m−2 was established as the optimal extended lomeguatrib dosing schedule, with haematological toxicity being dose limiting. There were two partial responses to treatment giving an overall response rate of 6.25%. Extending lomeguatrib administration beyond that of temozolomide requires a reduced dose of the latter agent. Only limited clinical activity was seen, suggesting no advantage for this regimen over conventional temozolomide administration in the treatment of melanoma

    O6-methylguanine-DNA methyltransferase depletion and DNA damage in patients with melanoma treated with temozolomide alone or with lomeguatrib

    Get PDF
    We evaluated the pharmacodynamic effects of the O6-methylguanine-DNA methyltransferase (MGMT) inactivator lomeguatrib (LM) on patients with melanoma in two clinical trials. Patients received temozolomide (TMZ) for 5 days either alone or with LM for 5, 10 or 14 days. Peripheral blood mononuclear cells (PBMCs) were isolated before treatment and during cycle 1. Where available, tumour biopsies were obtained after the last drug dose in cycle 1. Samples were assayed for MGMT activity, total MGMT protein, and O6-methylguanine (O6-meG) and N7-methylguanine levels in DNA. MGMT was completely inactivated in PBMC from patients receiving LM, but detectable in those on TMZ alone. Tumours biopsied on the last day of treatment showed complete inactivation of MGMT but there was recovery of activity in tumours sampled later. Significantly more O6-meG was present in the PBMC DNA of LM/TMZ patients than those on TMZ alone. LM/TMZ leads to greater MGMT inactivation, and higher levels of O6-meG than TMZ alone. Early recovery of MGMT activity in tumours suggested that more protracted dosing with LM is required. Extended dosing of LM completely inactivated PBMC MGMT, and resulted in persistent levels of O6-meG in PBMC DNA during treatment

    A conceptually new treatment approach for relapsed glioblastoma: Coordinated undermining of survival paths with nine repurposed drugs (CUSP9) by the International Initiative for Accelerated Improvement of Glioblastoma Care.

    Get PDF
    To improve prognosis in recurrent glioblastoma we developed a treatment protocol based on a combination of drugs not traditionally thought of as cytotoxic chemotherapy agents but that have a robust history of being well-tolerated and are already marketed and used for other non-cancer indications. Focus was on adding drugs which met these criteria: a) were pharmacologically well characterized, b) had low likelihood of adding to patient side effect burden, c) had evidence for interfering with a recognized, well-characterized growth promoting element of glioblastoma, and d) were coordinated, as an ensemble had reasonable likelihood of concerted activity against key biological features of glioblastoma growth. We found nine drugs meeting these criteria and propose adding them to continuous low dose temozolomide, a currently accepted treatment for relapsed glioblastoma, in patients with recurrent disease after primary treatment with the Stupp Protocol. The nine adjuvant drug regimen, Coordinated Undermining of Survival Paths, CUSP9, then are aprepitant, artesunate, auranofin, captopril, copper gluconate, disulfiram, ketoconazole, nelfinavir, sertraline, to be added to continuous low dose temozolomide. We discuss each drug in turn and the specific rationale for use- how each drug is expected to retard glioblastoma growth and undermine glioblastoma's compensatory mechanisms engaged during temozolomide treatment. The risks of pharmacological interactions and why we believe this drug mix will increase both quality of life and overall survival are reviewed

    Ras/Raf/MEK/ERK and PI3K/PTEN/Akt/mTOR Cascade Inhibitors: How Mutations Can Result in Therapy Resistance and How to Overcome Resistance

    Get PDF
    The Ras/Raf/MEK/ERK and PI3K/PTEN/Akt/mTOR cascades are often activated by genetic alterations in upstream signaling molecules such as receptor tyrosine kinases (RTK). Integral components of these pathways, Ras, B-Raf, PI3K, and PTEN are also activated/inactivated by mutations. These pathways have profound effects on proliferative, apoptotic and differentiation pathways. Dysregulation of these pathways can contribute to chemotherapeutic drug resistance, proliferation of cancer initiating cells (CICs) and premature aging. This review will evaluate more recently described potential uses of MEK, PI3K, Akt and mTOR inhibitors in the proliferation of malignant cells, suppression of CICs, cellular senescence and prevention of aging. Ras/Raf/MEK/ERK and Ras/PI3K/PTEN/Akt/mTOR pathways play key roles in the regulation of normal and malignant cell growth. Inhibitors targeting these pathways have many potential uses from suppression of cancer, proliferative diseases as well as aging
    • …
    corecore