6 research outputs found

    Surface anisotropy and particle size influence on hysteresis loops in La2/3Ca1/3MnO3 nanoparticles : A simulation approach

    Get PDF
    Thermal and hysteretic magnetic properties of La2/3Ca1/3MnO3 nanoparticles were studied using Monte Carlo simulations, with emphasis on the influence of anisotropy. In this work, several nanoparticle sizes ranging from 2.32 to 11.58 nm were analyzed and their properties were compared to those of the bulk material. The magnetic behavior of the material was modeled using the three dimensional Heisenberg model with nearest neighbor interactions. Furthermore, both uniaxial and NĂ©el anisotropies were considered for core and surface magnetic sites respectively. Deviations in the critical temperature and coercive field were observed for nanoparticles when compared with those of the bulk material. In addition to these properties, the special spin configurations that arise from the competition between the exchange, anisotropy and external magnetic field were also studied. All these effects are interpreted in terms of the surface properties such as the NĂ©el anisotropy and the decrease in the coordination number

    Dual-pump manipulation of ultrafast demagnetization in TbFeCo

    Get PDF
    Laser-induced ultrafast demagnetization in TbFeCo has been studied with a dual-pumping system. Five different laser fluence combinations were applied at three different time intervals between two pump pulses. The experimental results are also compared with computational simulations using the atomistic model. Importantly, this demagnetization can be controllably manipulated in both its magnitude and temporal response

    Enhancement of intrinsic magnetic damping in defect-free epitaxial Fe3O4 thin films

    Get PDF
    We have investigated the magnetic damping of precessional spin dynamics in defect-controlled epitaxial grown Fe3O4(111)/Yttria-stabilized Zirconia nanoscale films by all-optical pump-probe measurements. The intrinsic damping constant of the defect-free Fe3O4 film is found to be strikingly larger than that of the as-grown Fe3O4 film with structural defects. We demonstrate that the population of the first-order per- pendicular standing spin wave (PSSW) mode, which is exclusively observed in the defect-free film under sufficiently high external magnetic fields, leads to the enhancement of the magnetic damping of the uniform precession (Kittel) mode. We propose a physical picture in which the PSSW mode acts as an additional channel for the extra energy dissipation of the Kittel mode. The energy transfer from the Kittel mode to the PSSW mode increases as in-plane magnetization precession becomes more uniform, resulting in the unique intrinsic magnetic damp- ing enhancement in the defect-free Fe3O4 film

    Defect-correlated skyrmions and controllable generation in perpendicularly magnetized CoFeB ultrathin films

    Get PDF
    Skyrmions have attracted significant interest due to their topological spin structures and fascinating physical features. The skyrmion phase arises in materials with a Dzyaloshinskii–Moriya interaction at interfaces or in volume of non-centrosymmetric materials. Although skyrmions have been demonstrated experimentally, the general critical intrinsic relationship among fabrication, microstructures, magnetization, and the existence of skyrmions remains to be established. Here, two series of CoFeB ultrathin films with controlled atomic scale structures are employed to reveal this relationship. The amount of defects was artificially tuned by inverting the growth order, and skyrmions were shown to be preferentially formed in samples with more defects. By utilizing first-order reversal curves, the stable region and the skyrmion densities can be efficiently controlled in the return magnetization loops. These findings establish a general internal link from sample preparation to skyrmion generation and provide a general method for controlling skyrmion density

    Magnetic skyrmionium diode with a magnetic anisotropy voltage gating

    No full text
    The magnetic skyrmionium can be seen as a coalition of two magnetic skyrmions with opposite topological charges and has potential applications in next-generation spintronic devices. Here, we report the current-driven dynamics of a skyrmionium in a ferromagnetic nanotrack with the voltage-controlled magnetic anisotropy. The pinning and depinning of a skyrmionium controlled by the voltage gate are investigated. The current-driven skyrmionium can be used to mimic the skyrmionium diode effect in the nanotrack with a voltage gate. We have further studied the skyrmionium dynamics in the nanotrack driven by a magnetic anisotropy gradient in the absence of spin current. The performance of a single wedge-shaped voltage gate at different temperatures is studied. Our results may provide useful guidelines for the design of voltage-controlled and skyrmionium-based spintronic devices

    New materials for micro-scale sensors and actuators:an engineering review

    No full text
    This paper provides a detailed overview of developments in transducer materials technology relating to their current and future applications in micro-scale devices. Recent advances in piezoelectric, magnetostrictive and shape-memory alloy systems are discussed and emerging transducer materials such as magnetic nanoparticles, expandable micro-spheres and conductive polymers are introduced. Materials properties, transducer mechanisms and end applications are described and the potential for integration of the materials with ancillary systems components is viewed as an essential consideration. The review concludes with a short discussion of structural polymers that are extending the range of micro-fabrication techniques available to designers and production engineers beyond the limitations of silicon fabrication technology.Original Publication:S.A. Wilson, R.P.-J. Jourdain, Q. Zhang, R.A. Dorey, C.R. Bowen, Magnus Willander, Qamar Ul Wahab, M. Willander, S.M. Al-hilli, O. Nur, E. Quandt, C. Johansson, E. Pagounis, M. Kohl, J. Matovic, B. Samel, der Wijngaart W. van, Edwin Jager, D. Carlsson, Z. Djinovic, M. Wegener, C. Moldovan, E. Abad, M. Wendlandt, C. Rusu and K. Persson, New materials for micro-scale sensors and actuators. An engineering review, 2007, Materials science & engineering. R, Reports, (56), 1-129.http://dx.doi.org/10.1016/j.mser.2007.03.001Copyright: Elsevierhttp://www.elsevier.com
    corecore