35 research outputs found

    SPACA3gene variants in a New Zealand cohort of infertile and fertile couples

    Get PDF
    SPRASA (also referred to as SLLP1) is a protein identified in the acrosome of human sperm and encoded by the gene SPACA3. SPRASA is associated with sperm-oocyte recognition and binding, and may play a role in fertility. In order to determine whether variants in the SPACA3 gene are associated with human infertility, we undertook a genetic analysis of 102 infertile and 104 fertile couples. Three gene variants were identified using PCR-based DNA sequencing; 1) an insertion of TGC within a quadruple tri-nucleotide (TGC) repeat region in the 5’ untranslated region (UTR) (g.–22TGC(4_5), 2) a guanine to adenosine transition at position 239 (c.239G> A) resulting in a non-synonymous amino acid substitution from cysteine to tyrosine (p.C80Y) at position 80 in the putative transmembrane region, and 3) a novel nucleotide variant (c.691G> C) located in the 3’UTR. A functional effect of the g.–22TGC (4_5) was confirmed by a luciferase expression assay, while the effects of the variants c.239G> A and c.691G> C were predicted using in silico analysis. Although the frequencies of these variants were not significantly different between the infertile and fertile populations, we present evidence that the variants could affect the expression levels or function of SPRASA, thereby affecting a couple's fertility. Larger populations, especially individuals/couples with unexplained infertility, need to be screened for these variants to validate a relationship with fertility

    Evolution of the Toarcian (Early Jurassic) carbon-cycle and global climatic controls on local sedimentary processes (Cardigan Bay Basin, UK)

    Get PDF
    The late Early Jurassic Toarcian Stage represents the warmest interval of the Jurassic Period, with an abrupt rise in global temperatures of up to ∼7 °C in mid-latitudes at the onset of the early Toarcian Oceanic Anoxic Event (T-OAE; ∼183 Ma). The T-OAE, which has been extensively studied in marine and continental successions from both hemispheres, was marked by the widespread expansion of anoxic and euxinic waters, geographically extensive deposition of organic-rich black shales, and climatic and environmental perturbations. Climatic and environmental processes following the T-OAE are, however, poorly known, largely due to a lack of study of stratigraphically well-constrained and complete sedimentary archives. Here, we present integrated geochemical and physical proxy data (high-resolution carbon-isotope data (δ13C), bulk and molecular organic geochemistry, inorganic petrology, mineral characterisation, and major- and trace-element concentrations) from the biostratigraphically complete and expanded entire Toarcian succession in the Llanbedr (Mochras Farm) Borehole, Cardigan Bay Basin, Wales, UK. With these data, we (1) construct the first high-resolution biostratigraphically calibrated chemostratigraphic reference record for nearly the complete Toarcian Stage, (2) establish palaeoceanographic and depositional conditions in the Cardigan Bay Basin, (3) show that the T-OAE in the hemipelagic Cardigan Bay Basin was marked by the occurrence of gravity-flow deposits that were likely linked to globally enhanced sediment fluxes to continental margins and deeper marine (shelf) basins, and (4) explore how early Toarcian (tenuicostatum and serpentinum zones) siderite formation in the Cardigan Bay Basin may have been linked to low global oceanic sulphate concentrations and elevated supply of iron (Fe) from the hinterland, in response to climatically induced changes in hydrological cycling, global weathering rates and large-scale sulphide and evaporite deposition

    Minimal information for studies of extracellular vesicles 2018 (MISEV2018):a position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines

    Get PDF
    The last decade has seen a sharp increase in the number of scientific publications describing physiological and pathological functions of extracellular vesicles (EVs), a collective term covering various subtypes of cell-released, membranous structures, called exosomes, microvesicles, microparticles, ectosomes, oncosomes, apoptotic bodies, and many other names. However, specific issues arise when working with these entities, whose size and amount often make them difficult to obtain as relatively pure preparations, and to characterize properly. The International Society for Extracellular Vesicles (ISEV) proposed Minimal Information for Studies of Extracellular Vesicles (“MISEV”) guidelines for the field in 2014. We now update these “MISEV2014” guidelines based on evolution of the collective knowledge in the last four years. An important point to consider is that ascribing a specific function to EVs in general, or to subtypes of EVs, requires reporting of specific information beyond mere description of function in a crude, potentially contaminated, and heterogeneous preparation. For example, claims that exosomes are endowed with exquisite and specific activities remain difficult to support experimentally, given our still limited knowledge of their specific molecular machineries of biogenesis and release, as compared with other biophysically similar EVs. The MISEV2018 guidelines include tables and outlines of suggested protocols and steps to follow to document specific EV-associated functional activities. Finally, a checklist is provided with summaries of key points

    Sex-Sorted Sperm and Fertility: An Alternative View

    No full text

    The role of SPRASA in female fertility

    Get PDF
    Fertility is a complex process and infertility can have many causes. Sperm protein reactive with antisperm antibody (SPRASA)/sperm lysozyme-like protein 1 is a protein discovered as the target of autoantibodies in infertile men and previously thought to be expressed only in sperm. Using a bovine in vitro fertilization model, we have shown that SPRASA antiserum reduced sperm binding to zona-free oocytes and the development of embryos to morulae but did not affect the postfertilization cleavage rate to 2 cells or sperm motility. We demonstrated that SPRASA was expressed in ovarian follicles, corpora lutea, and oocytes by a combination of reverse transcription-polymerase chain reaction and immunohistochemistry. Female mice immunized with SPRASA had profound infertility following timed matings and those mice that did become pregnant had reduced fetal viability. The levels of antibodies reactive with SPRASA in 204 fertile and 202 infertile couples were elevated in 3 infertile but no fertile women. Together, these results indicate that SPRASA has a role in female fertility.</p

    The Blocking of Integrin-Mediated Interactions with Maternal Endothelial Cells Reversed the Endothelial Cell Dysfunction Induced by EVs, Derived from Preeclamptic Placentae

    No full text
    Placental extracellular vesicles (EVs) have increasingly been recognized as a major mediator of feto-maternal communication. However, the cellular and molecular mechanisms of the uptake of placental EVs by recipient cells are still not well-understood. We previously reported that placental EVs target a limited number of organs in vivo. In the current study, we investigated the mechanisms underlying the uptake of placental EVs into target cells. Placental EVs were derived from explant cultures of normal or preeclamptic placentae. The mechanisms underlying the uptake of placental EVs were elucidated, using the phagocytosis or endocytosis inhibitor, trypsin-treatment or integrin-blocking peptides. The endothelial cell activation was studied using the monocyte adhesion assay after the preeclamptic EVs exposure, with and/or without treatment with the integrin blocking peptide, YIGSR. The cellular mechanism of the uptake of the placental EVs was time, concentration and energy-dependent and both the phagocytosis and endocytosis were involved in this process. Additionally, proteins on the surface of the placental EVs, including integrins, were involved in the EV uptake process. Furthermore, inhibiting the uptake of preeclamptic EVs with YIGSR, reduced the endothelial cell activation. The interaction between the placental EVs and the recipient cells is mediated by integrins, and the cellular uptake is mediated by a combination of both phagocytosis and endocytosis

    Changes in mitochondrial respiration in the human placenta over gestation

    Get PDF
    Introduction: Placental mitochondria are subjected to micro-environmental changes throughout gestation, in particular large variations in oxygen. How placental mitochondrial respiration adapts to changing oxygen concentrations remains unexplored. Additionally, placental tissue is often studied in culture; however, the effect of culture on placental mitochondria is unclear. Material and methods: Placental tissue was obtained from first trimester and term (laboured and non-laboured) pregnancies, and selectively permeabilized to access mitochondria. Respirometry was used to compare respiration states and substrate use in mitochondria. Additionally, explants of placental tissue were cultured for four, 12, 24, 48, or 96 h and respiration measured. Results: Mitochondrial respiration decreased at 11 weeks compared to earlier gestations (p = 0.05–0.001), and mitochondrial content increased at 12–13 weeks compared to 7–10 weeks (p = 0.042). In term placentae, oxidative phosphorylation (OXPHOS) through mitochondrial complex IV (p Discussion: Respiration and mitochondrial content alter over gestation/with labour. Decreased respiration at 11 weeks and increased mitochondrial content at 12–13 weeks may relate to onset of maternal blood flow, and increased respiration as a result of labour may be an adaptation to ischaemia-reperfusion. At term, mitochondria were more susceptible to changes in respiratory function relative to first trimester when cultured in vitro, perhaps reflecting changes in metabolic demands as gestation progresses. Metabolic plasticity of placental mitochondria has relevance to placenta-mediated diseases.</p

    Investigating the consistency of extracellular vesicle production from breast cancer subtypes using CELLine adherent bioreactors

    No full text
    Abstract Extracellular vesicle (EV) research has grown rapidly in recent years, largely due to the potential use of EVs as liquid biopsy biomarkers or therapeutics. However, in‐depth characterisation and validation of EVs produced using conventional in vitro cultures can be challenging due to the large area of cell monolayers and volumes of culture media required. To overcome this obstacle, multiple bioreactor designs have been tested for EV production with varying success, but the consistency of EVs produced over time in these systems has not been reported previously. In this study, we demonstrate that several breast cancer cell lines of different subtypes can be cultured simultaneously in space, resource, and time efficient manner using CELLine AD 1000 systems, allowing the consistent production of vast amounts of EVs for downstream experimentation. We report an improved workflow used for inoculating, maintaining, and monitoring the bioreactors, their EV production, and the characterisation of the EVs produced. Lastly, our proteomic analyses of the EVs produced throughout the lifetime of the bioreactors show that core EV‐associated proteins are relatively consistent, with few minor variations over time, but that tracking the production of EVs is a convenient method to indirectly monitor the bioreactor and consistency of the yielded EVs. These findings will aid future studies requiring the simultaneous production of large amounts of EVs from several cell lines of different subtypes of a disease and other EV biomanufacturing applications
    corecore