84 research outputs found

    Response to "Comment on Static correlations functions and domain walls in glass-forming liquids: The case of a sandwich geometry" [J. Chem. Phys. 144, 227101 (2016)]

    Get PDF
    The point-to-set correlation function has proved to be a very valuable tool to probe structural correlations in disordered systems, but more than that, its detailed behavior has been used to try to draw information on the mechanisms leading to glassy behavior in supercooled liquids. For this reason it is of primary importance to discern which of those details are peculiar to glassy systems, and which are general features of confinement. Within the present response we provide an answer to the concerns raised in [J. Chem. Phys. 144, 227101 (2016)]

    Response to “Comment on ‘Static correlations functions and domain walls in glass-forming liquids: The case of a sandwich geometry”’ [J. Chem. Phys. 144, 227101 (2016)]

    Get PDF
    The point-to-set correlation function has proved to be a very valuable tool to probe structural correlations in disordered systems, but more than that, its detailed behavior has been used to try to draw information on the mechanisms leading to glassy behavior in supercooled liquids. For this reason it is of primary importance to discern which of those details are peculiar to glassy systems, and which are general features of confinement. Thus the concerns raised in Ref. 1 definitely need to meet an answer. The Comment proposes an alternative analysis of the numerical data presented in Ref. 2, according to which the behaviour of the point-to-set correlation function can be interpreted as a linear superposition of boundary effects, rather than the effect of non-trivial thermodynamics. We believe this alternative explanation is not compelling.Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicada

    Response to “Comment on ‘Static correlations functions and domain walls in glass-forming liquids: The case of a sandwich geometry”’ [J. Chem. Phys. 144, 227101 (2016)]

    Get PDF
    The point-to-set correlation function has proved to be a very valuable tool to probe structural correlations in disordered systems, but more than that, its detailed behavior has been used to try to draw information on the mechanisms leading to glassy behavior in supercooled liquids. For this reason it is of primary importance to discern which of those details are peculiar to glassy systems, and which are general features of confinement. Thus the concerns raised in Ref. 1 definitely need to meet an answer. The Comment proposes an alternative analysis of the numerical data presented in Ref. 2, according to which the behaviour of the point-to-set correlation function can be interpreted as a linear superposition of boundary effects, rather than the effect of non-trivial thermodynamics. We believe this alternative explanation is not compelling.Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicada

    The Italian TREETALKER NETWORK (ITT-Net): continuous large scale monitoring of tree functional traits and vulnerabilities to climate change

    Get PDF
    20openItalian coauthor/editorThe Italian TREETALKER NETWORK (ITT-Net) aims to respond to one of the grand societal challenges: the impact of climate changes on forests ecosystem services and forest dieback. The comprehension of the link between these phenomena requires to complement the most classical approaches with a new monitoring paradigm based on large scale, single tree, high frequency and long-term monitoring tree physiology, which, at present, is limited by the still elevated costs of multi-sensor devices, their energy demand and maintenance not always suitable for monitoring in remote areas. The ITT-Net network will be a unique and unprecedented worldwide example of real time, large scale, high frequency and long-term monitoring of tree physiological parameters. By spring 2020, as part of a national funded project (PRIN) the network will have set 37 sites from the north-east Alps to Sicily where a new low cost, multisensor technology “the TreeTalker®” equipped to measure tree radial growth, sap flow, transmitted light spectral components related to foliage dieback and physiology and plant stability (developed by Nature 4.0), will monitor over 600 individual trees. A radio LoRa protocol for data transmission and access to cloud services will allow to transmit in real time high frequency data on the WEB cloud with a unique IoT identifier to a common database where big data analysis will be performed to explore the causal dependency of climate events and environmental disturbances with tree functionality and resilience. With this new network, we aim to create a new knowledge, introducing a massive data observation and analysis, about the frequency, intensity and dynamical patterns of climate anomalies perturbation on plant physiological response dynamics in order to: 1) characterize the space of “normal or safe tree operation mode” during average climatic conditions; 2) identify the non-linear tree responses beyond the safe operation mode, induced by extreme events, and the tipping points; 3) test the possibility to use a high frequency continuous monitoring system to identify early warning signals of tree stress which might allow to follow tree dynamics under climate change in real time at a resolution and accuracy that cannot always be provided through forest inventories or remote sensing technologies.openCastaldi, S.; Antonucci, S.; Asgharina, S.; Battipaglia, G.; Belelli Marchesini, L.; Cavagna, M.; Chini, I.; Cocozza, C.; Gianelle, D.; La Mantia, T.; Motisi, A.; Niccoli, F.; Pacheco Solana, A.; Sala, G.; Santopuoli, G.; Tonon, G.; Tognetti, R.; Zampedri, R.; Zorzi, I.; Valentini, R.Castaldi, S.; Antonucci, S.; Asgharina, S.; Battipaglia, G.; Belelli Marchesini, L.; Cavagna, M.; Chini, I.; Cocozza, C.; Gianelle, D.; La Mantia, T.; Motisi, A.; Niccoli, F.; Pacheco Solana, A.; Sala, G.; Santopuoli, G.; Tonon, G.; Tognetti, R.; Zampedri, R.; Zorzi, I.; Valentini, R

    Clinical Spectrum Time Course in Anti Jo-1 Positive Antisynthetase Syndrome

    Get PDF
    Anti Jo-1 antibodies are the main markers of the antisynthetase syndrome (ASSD), an autoimmune disease clinically characterized by the occurrence of arthritis, myositis, and interstitial lung disease (ILD). These manifestations usually co-occur (for practical purpose complete forms) in the same patient, but cases with only 1 or 2 of these findings (for practical purpose incomplete forms) have been described. In incomplete forms, the ex novo occurrence of further manifestations is possible, although with frequencies and timing not still defined. The aim of this international, multicenter, retrospective study was to characterize the clinical time course of anti Jo-1 positive ASSD in a large cohort of patients. Included patients should be anti Jo-1 positive and with at least 1 feature between arthritis, myositis, and ILD. We evaluated the differences between complete and incomplete forms, timing of clinical picture appearance and analyzed factors predicting the appearance of further manifestations in incomplete ASSD. Finally, we collected 225 patients (58 males and 167 females) with a median follow-up of 80 months. At the onset, complete ASSD were 44 and incomplete 181. Patients with incomplete ASSD had frequently only 1 of the classic triad findings (110 cases), in particular, isolated arthritis in 54 cases, isolated myositis in 28 cases, and isolated ILD in 28 cases. At the end of follow-up, complete ASSD were 113, incomplete 112. Only 5 patients had an isolated arthritis, only 5 an isolated myositis, and 15 an isolated ILD. During the follow-up, 108 patients with incomplete forms developed further manifestations. Single main feature onset was the main risk factor for the ex novo appearance of further manifestation. ILD was the prevalent ex novo manifestation (74 cases). In conclusion, ASSD is a condition that should be carefully considered in all patients presenting with arthritis, myositis, and ILD, even when isolated. The ex novo appearance of further manifestations in patients with incomplete forms is common, thus indicating the need for an adequate clinical and instrumental follow-up. Furthermore, the study clearly suggested that in ASSD multidisciplinary approach involving Rheumatology, Neurology, Pneumology, and Internal Medicine specialists is mandatory

    Influence of Antisynthetase Antibodies Specificities on Antisynthetase Syndrome Clinical Spectrum TimeCourse

    Get PDF
    Introduction: Increased cardiovascular (CV) morbidity and mortality is observed in inflammatory joint diseases (IJDs) such as rheumatoid arthritis, ankylosing spondylitis, and psoriatic arthritis. However, the management of CV disease in these conditions is far from being well established.Areas covered: This review summarizes the main epidemiologic, pathophysiological, and clinical risk factors of CV disease associated with IJDs. Less common aspects on early diagnosis and risk stratification of the CV disease in these conditions are also discussed. In Europe, the most commonly used risk algorithm in patients with IJDs is the modified SCORE index based on the revised recommendations proposed by the EULAR task force in 2017.Expert opinion: Early identification of IJD patients at high risk of CV disease is essential. It should include the use of complementary noninvasive imaging techniques. A multidisciplinary approach aimed to improve heart-healthy habits, including strict control of classic CV risk factors is crucial. Adequate management of the underlying IJD is also of main importance since the reduction of disease activity decreases the risk of CV events. Non-steroidal anti-inflammatory drugs may have a lesser harmful effect in IJD than in the general population, due to their anti-inflammatory effects along with other potential beneficial effects.This research was partially funded by FOREUM—Foundation for Research in Rheumatolog

    Author Correction: The FLUXNET2015 dataset and the ONEFlux processing pipeline for eddy covariance data

    Get PDF

    The FLUXNET2015 dataset and the ONEFlux processing pipeline for eddy covariance data

    Get PDF
    The FLUXNET2015 dataset provides ecosystem-scale data on CO2, water, and energy exchange between the biosphere and the atmosphere, and other meteorological and biological measurements, from 212 sites around the globe (over 1500 site-years, up to and including year 2014). These sites, independently managed and operated, voluntarily contributed their data to create global datasets. Data were quality controlled and processed using uniform methods, to improve consistency and intercomparability across sites. The dataset is already being used in a number of applications, including ecophysiology studies, remote sensing studies, and development of ecosystem and Earth system models. FLUXNET2015 includes derived-data products, such as gap-filled time series, ecosystem respiration and photosynthetic uptake estimates, estimation of uncertainties, and metadata about the measurements, presented for the first time in this paper. In addition, 206 of these sites are for the first time distributed under a Creative Commons (CC-BY 4.0) license. This paper details this enhanced dataset and the processing methods, now made available as open-source codes, making the dataset more accessible, transparent, and reproducible.Peer reviewe
    corecore