414 research outputs found

    Uniformly accelerating black holes in a de Sitter universe

    Get PDF
    A class of exact solutions of Einstein's equations is analysed which describes uniformly accelerating charged black holes in an asymptotically de Sitter universe. This is a generalisation of the C-metric which includes a cosmological constant. The physical interpretation of the solutions is facilitated by the introduction of a new coordinate system for de Sitter space which is adapted to accelerating observers in this background. The solutions considered reduce to this form of the de Sitter metric when the mass and charge of the black holes vanish.Comment: 6 pages REVTeX, 3 figures, to appear in Phys. Rev. D. Figure 2 correcte

    Stealth Branes

    Get PDF
    We discuss the brane world model of Dvali, Gabadadze and Porrati in which branes evolve in an infinite bulk and the brane curvature term is added to the action. If Z_2 symmetry between the two sides of the brane is not imposed, we show that the model admits the existence of "stealth branes" which follow the standard 4D internal evolution and have no gravitational effect on the bulk space. Stealth branes can nucleate spontaneosly in a Minkowski bulk. This process is described by the standard 4D quantum cosmology formalism with tunneling boundary conditions for the brane world wave function. The notorious ambiguity in the choice of boundary conditions is fixed in this case due to the presence of the embedding spacetime. We also point to some problematic aspects of models admitting stealth brane solutions.Comment: 24 pages; Final version, to appear in Phys. Rev. D. The discussion of "embeddability obstruction" is removed (thanks to Takahiro Tanaka who convinced us that there is no such obstruction

    Unwrapping Closed Timelike Curves

    Full text link
    Closed timelike curves (CTCs) appear in many solutions of the Einstein equation, even with reasonable matter sources. These solutions appear to violate causality and so are considered problematic. Since CTCs reflect the global properties of a spacetime, one can attempt to change its topology, without changing its geometry, in such a way that the former CTCs are no longer closed in the new spacetime. This procedure is informally known as unwrapping. However, changes in global identifications tend to lead to local effects, and unwrapping is no exception, as it introduces a special kind of singularity, called quasi-regular. This "unwrapping" singularity is similar to the string singularities. We give two examples of unwrapping of essentially 2+1 dimensional spacetimes with CTCs, the Gott spacetime and the Godel universe. We show that the unwrapped Gott spacetime, while singular, is at least devoid of CTCs. In contrast, the unwrapped Godel spacetime still contains CTCs through every point. A "multiple unwrapping" procedure is devised to remove the remaining circular CTCs. We conclude that, based on the two spacetimes we investigated, CTCs appearing in the solutions of the Einstein equation are not simply a mathematical artifact of coordinate identifications, but are indeed a necessary consequence of General Relativity, provided only that we demand these solutions do not possess naked quasi-regular singularities.Comment: 29 pages, 9 figure

    Gravitational collapse of a Hagedorn fluid in Vaidya geometry

    Get PDF
    The gravitational collapse of a high-density null charged matter fluid, satisfying the Hagedorn equation of state, is considered in the framework of the Vaidya geometry. The general solution of the gravitational field equations can be obtained in an exact parametric form. The conditions for the formation of a naked singularity, as a result of the collapse of the compact object, are also investigated. For an appropriate choice of the arbitrary integration functions the null radial outgoing geodesic, originating from the shell focussing central singularity, admits one or more positive roots. Hence a collapsing Hagedorn fluid could end either as a black hole, or as a naked singularity. A possible astrophysical application of the model, to describe the energy source of gamma-ray bursts, is also considered.Comment: 14 pages, 2 figures, to appear in Phys. Rev.

    Carbono orgĂąnico dissolvido e biodisponibilidade de N e P como indicadores de qualidade do solo

    Get PDF
    Nas Ășltimas dĂ©cadas, qualidade do solo tem se tornado um tĂłpico importante na ciĂȘncia do solo. Embora esforços considerĂĄveis tenham sido dedicados com o intuito de definir "qualidade do solo", ainda nĂŁo hĂĄ um conceito amplamente aceito pela comunidade cientifica. A seleção de Ă­ndices qualitativos para definir qualidade do solo Ă© uma tarefa extremamente difĂ­cil, e diversas propriedades quĂ­micas, fĂ­sicas e biolĂłgicas tem sido sugeridas como potenciais indicadores. A matĂ©ria orgĂąnica do solo estĂĄ associada com processos quĂ­micos, fĂ­sicos e biolĂłgicos no solo, e, portanto, Ă© considerada um dos melhores indicadores de qualidade do solo. O manejo do solo pode influenciar significativamente a dinĂąmica do carbono orgĂąnico e o ciclo de N, P, e S. Entretanto, mudanças na concentração total da matĂ©ria organica em resposta ao manejo pode ser dificil de ser detectada devido Ă  variabilidade natural do solo. Quando comparada com a matĂ©ria orgĂąnica total do solo, a fração mais prontamente disponĂ­vel, como o carbono orgĂąnico dissolvido (COD), Ă© mais sensĂ­vel Ă s mudanças no manejo do solo a curto e mĂ©dio prazo e, portanto, pode ser utilizada como indicador fundamental de qualidade do solo ou das alteraçÔes das condiçÔes naturais. Embora a fração dissolvida represente apenas uma pequena porção da matĂ©ria orgĂąnica total do solo, o COD Ă© mĂłvel no solo e constitui uma importante fonte de C para os microorganismos, podendo facilmente refletir os efeitos de diferentes sistemas de manejo. InĂșmeros mĂ©todos sĂŁo utilizados para caracterizar o COD, mas os processos que influenciam sua mineralização e a disponibilidade dos elementos associado com a matĂ©ria orgĂąnica (N, P, e S) ainda nĂŁo sĂŁo completamente entendidos. Pesquisas futuras devem buscar entender os processos que governam a dinĂąmica de nutrientes e do COD e como os mesmos afetam a qualidade do solo.Soil quality has become an important issue in soil science. Considerable attempts have been made to define soil quality, but a general concept has not yet been accepted by the scientific community. The selection of quantitative indices for soil quality is extremely difficult, and a considerable number of chemical, physical, and biochemical properties have been suggested as potential indicators of soil quality. Because soil organic matter (SOM) can be associated with different soil chemical, physical and biological processes, it has been widely considered as one of the best soil quality indicator. Land use can significantly influence dynamics of organic carbon and N, P, and S cycle. However, changes in total soil organic carbon (SOC) contents in response to land use may be difficult to detect because of the natural soil variability. In the short to medium term, biological properties and readily decomposable fractions of SOC, such as dissolved organic carbon (DOC), are much more sensitive to soil management than is SOM as a whole, and can be used as a key indicator of soil natural functions. Despite the fact that labile C accounts for a small portion of the total organic matter in the soils, DOC is the most mobile and important C-source for microorganisms, and can easily reflect the effects of land use on soil quality. Although several methods are used to characterize DOC, the factors influencing mineralization and bioavailability of elements associated with organic matter (N, P, and S) remains unclear. Future research should focus on the processes that govern DOC and nutrient dynamics and how they affect soil quality

    Search for direct production of charginos and neutralinos in events with three leptons and missing transverse momentum in √s = 7 TeV pp collisions with the ATLAS detector

    Get PDF
    A search for the direct production of charginos and neutralinos in final states with three electrons or muons and missing transverse momentum is presented. The analysis is based on 4.7 fb−1 of proton–proton collision data delivered by the Large Hadron Collider and recorded with the ATLAS detector. Observations are consistent with Standard Model expectations in three signal regions that are either depleted or enriched in Z-boson decays. Upper limits at 95% confidence level are set in R-parity conserving phenomenological minimal supersymmetric models and in simplified models, significantly extending previous results

    Jet size dependence of single jet suppression in lead-lead collisions at sqrt(s(NN)) = 2.76 TeV with the ATLAS detector at the LHC

    Get PDF
    Measurements of inclusive jet suppression in heavy ion collisions at the LHC provide direct sensitivity to the physics of jet quenching. In a sample of lead-lead collisions at sqrt(s) = 2.76 TeV corresponding to an integrated luminosity of approximately 7 inverse microbarns, ATLAS has measured jets with a calorimeter over the pseudorapidity interval |eta| < 2.1 and over the transverse momentum range 38 < pT < 210 GeV. Jets were reconstructed using the anti-kt algorithm with values for the distance parameter that determines the nominal jet radius of R = 0.2, 0.3, 0.4 and 0.5. The centrality dependence of the jet yield is characterized by the jet "central-to-peripheral ratio," Rcp. Jet production is found to be suppressed by approximately a factor of two in the 10% most central collisions relative to peripheral collisions. Rcp varies smoothly with centrality as characterized by the number of participating nucleons. The observed suppression is only weakly dependent on jet radius and transverse momentum. These results provide the first direct measurement of inclusive jet suppression in heavy ion collisions and complement previous measurements of dijet transverse energy imbalance at the LHC.Comment: 15 pages plus author list (30 pages total), 8 figures, 2 tables, submitted to Physics Letters B. All figures including auxiliary figures are available at http://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/HION-2011-02

    Search for displaced vertices arising from decays of new heavy particles in 7 TeV pp collisions at ATLAS

    Get PDF
    We present the results of a search for new, heavy particles that decay at a significant distance from their production point into a final state containing charged hadrons in association with a high-momentum muon. The search is conducted in a pp-collision data sample with a center-of-mass energy of 7 TeV and an integrated luminosity of 33 pb^-1 collected in 2010 by the ATLAS detector operating at the Large Hadron Collider. Production of such particles is expected in various scenarios of physics beyond the standard model. We observe no signal and place limits on the production cross-section of supersymmetric particles in an R-parity-violating scenario as a function of the neutralino lifetime. Limits are presented for different squark and neutralino masses, enabling extension of the limits to a variety of other models.Comment: 8 pages plus author list (20 pages total), 8 figures, 1 table, final version to appear in Physics Letters

    Measurement of the polarisation of W bosons produced with large transverse momentum in pp collisions at sqrt(s) = 7 TeV with the ATLAS experiment

    Get PDF
    This paper describes an analysis of the angular distribution of W->enu and W->munu decays, using data from pp collisions at sqrt(s) = 7 TeV recorded with the ATLAS detector at the LHC in 2010, corresponding to an integrated luminosity of about 35 pb^-1. Using the decay lepton transverse momentum and the missing transverse energy, the W decay angular distribution projected onto the transverse plane is obtained and analysed in terms of helicity fractions f0, fL and fR over two ranges of W transverse momentum (ptw): 35 < ptw < 50 GeV and ptw > 50 GeV. Good agreement is found with theoretical predictions. For ptw > 50 GeV, the values of f0 and fL-fR, averaged over charge and lepton flavour, are measured to be : f0 = 0.127 +/- 0.030 +/- 0.108 and fL-fR = 0.252 +/- 0.017 +/- 0.030, where the first uncertainties are statistical, and the second include all systematic effects.Comment: 19 pages plus author list (34 pages total), 9 figures, 11 tables, revised author list, matches European Journal of Physics C versio
    • 

    corecore