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Gravitational collapse of a Hagedorn fluid in Vaidya geometry
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The gravitational collapse of a high-density null charged matter fluid, satisfying the Hagedorn equation of
state, is considered in the framework of the Vaidya geometry. The general solution of the gravitational field
equations can be obtained in an exact parametric form. The conditions for the formation of a naked singularity,
as a result of the collapse of the compact object, are also investigated. For an appropriate choice of the arbitrary
integration functions the null radial outgoing geodesic, originating from the shell focussing central singularity,
admits one or more positive roots. Hence a collapsing Hagedorn fluid could end either as a black hole, or as a
naked singularity. A possible astrophysical application of the model, to describe the energy source of gamma-
ray bursts, is also considered.
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[. INTRODUCTION field associated with dust matter and is frequently applied
either in cosmological models or in describing the collapse

Investigating the final fate of the gravitational collapse ofof a star to a black hole. Tolman-Bondi space-times embody
an initially regular distribution of matter, in the framework of the Schwarzschild solution, the Friedman universes, and the
the Einstein theory of gravitation, is one of the most activeOppenheimer-Snyder collapse, as well as inhomogeneous
fields of research in contemporary general relativity. Oneexpansions and collapses.
would like to know whether, and under what initial condi- At first sight these two metrics are completely different.
tions, gravitational collapse results in black hole formation.Do the naked singularities that form in the collapse of null
One would also like to know if there are physical collapseradiation and in the collapse of dust bear any relation with
solutions that lead to naked singularities. If found, such soeach other? Are there any features common to both solu-
lutions would be counterexamples of the cosmic censorshifions? And if this is the case, what are the implications for
hypothesis, which states that curvature singularities in aseosmic censorship? As shown by Leni&s, the naked sin-
ymptotically flat space-times are always shrouded by evenjularities which appear in Vaidya and Tolman-Bondi space-
horizons. times are of the same nature. Various important features such

Penros¢1] was the first to propose the idea, known as theas the degree of inhomogeneity of the collapse necessary to
cosmic conjecture: does a cosmic censor exist who forbidproduce a naked singularity, the Cauchy horizon equation,
the occurrence of naked singularities, clothing each one in athe apparent horizon equation, the strength of the singularity
absolute event horizon? This conjecture can be formulated iand the stability of the space-time have a mutual correspon-
a strong sensén a reasonable space-time we cannot have alence in both metrics. For cosmic censorship, this result im-
naked singularityor in a weak sensgven if such singulari- plies that if the shell-focusing singularities arising from the
ties occur they are safely hidden behind an event horizomgollapse of a null fluid are not artifacts of sonieikona)
and therefore cannot communicate with far-away observersapproximation, then the shell-focusing singularities arising
Since Penrose’s proposal, there have been various attemgiem the collapse of dust are also not artifaced vice
to prove this conjecturésee[2] and references thergirlUn-  versa. Conversely, if the naked singularities are artifacts in
fortunately, none have been successful so far. one of them so are they in the other.

Since, due to the complexity of the full Einstein equa- Thus the Vaidya metric belongs to the Tolman-Bondi fam-
tions, the general problem appears intractable, metrics witily. The most unbound case yields the Vaidya metric. Hence
special symmetries are used to construct gravitational colene expects that major features which might arise in one of
lapse models. One such case is the two-dimensional reduthe metrics will also appear in the other. One example is the
tion of general relativity obtained by imposing spherical result that the strength in the Vaidya metric depends on the
symmetry. Even with this reduction, however, very few in- direction from which the geodesics enter the singuldfity
homogeneous exact nonstatic solutions have been found. Null fluids are, in principle, easier to treat than matter
One well-known example is the Vaidya metfig]. It de- fields. A null fluid is the eikonal approximation of a massless
scribes the gravitational field associated with the eikonal apscalar field. Thus if one shows that the naked singularities
proximation of an isotropic flow of unpolarized radiation, or, arising in the Vaidya metric can be derived from more fun-
in other words, it represents a null fluid. It is asymptotically damental (massless fields, then the naked singularities,
flat and it is employed in modeling the external field of ra- which form in the Tolman-Bondi collapse, may also be de-
diating stars and evaporating black holes. The second one itved from more fundamentalmassive fields. The same
the Tolman-Bondi metri¢4], which gives the gravitational types of relations and conclusions hold for charged radiation

and charged dust matter. The structure and properties of sin-
gularities in the gravitational collapse in Vaidya space-times
*Email address: harko@hkucc.hku.hk have been analyzed, from different points of view,6r-10].
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Within the framework of various physical models, the This leads to an equation for the metric function. The precise
spherical gravitational collapse has been analyzed in manfprm of the stress-energy tensor is then displayed. By using
papers. The role of initial density and velocity distributionsthis approach several classes of solutions describing the col-
towards determining the final outcome of spherical dust coldapse of a null fluid, satisfying barotropic and polytropic type
lapse and the causal structure of the singularity has beesquations of state, have been obtained. In the framework of
examined in terms of evolution of apparent horizon inthe same approach a large class of solutions, including
[11,17. The collapse was described by the Tolman-Bonditype-Il fluids, and which includes most of the known solu-
metric with two free functions. The collapse can end in eithettions of the Einstein field equations, has been derived, in four
a black hole or a naked singularity. The occurrence and nadimensions by Wang and W22], and inN=4 dimensions
ture of naked singularities in the Szekeres space-times havay Villas da Rocha[23]. The Vaidya radiating metric has
been investigated ifi13]. These space-times represent irro-been extended to include both a radiation field and a string
tational dust. They do not have any Killing vectors and theyfluid by Glass and Krisch24,25 and by Govinder and Gov-
are the generalizations of the Tolman-Bondi space-timesender[26].

There also exist naked singularities that satisfy both the lim- When nuclear matter is squeezed to a sufficiently high
iting focusing condition and the strong limiting focusing density, a phase transition takes place and neutron matter
conditions. The relevance of the initial state of a collapsingconverts into three-flavofstrang¢ quark matter, which is
dust cloud towards determining its final fate in the course ofdue to the fact that strange matter may be more stable than
a continuing gravitational collapse has been considered inuclear matter. The collapse of the quark fluid, described by
[14]. Given any arbitrary matter distribution for the cloud in the bag model equation of state=(p—4B)/3, with B

the initial epoch, there is always the freedom to chose the=const, has been studied by Harko and Chig@ and the

rest of the initial data, namely the initial velocities of the conditions for the formation of a naked singularity have been
collapsing spherical shells, so that, depending on this choic@btained. The obtained solution has been generalized to ar-
the collapse could result either in a black hole or a nakeditrary space-time dimensions and to a more general linear
singularity. Thus, given the initial density profile, to achieve equation of state by Ghosh and Dadhj@8,29.

the desired end state of the gravitational collapse one has to In 1965 Hagedorhi30] postulated that for large masses
give a suitable initial velocity of the cloud. The expressionthe spectrum of hadrons(m) grows exponentiallyp(m)

for the expansion of outgoing null geodesics in spherical dust-exp(mWTy), where T, the Hagedorn temperature, is a
collapse has been derived[ib5]. The limiting values of the scale parameter. The hypothesis was based on the observa-
expansion in the approach to singularity formation have beetion that at some point a further increase of energy in proton-
computed. Using these results one can show that the covereghoton and proton-antiproton collisions no longer raises the
as well as the naked, singularity solutions arising in sphericalemperature of the formed fireball, but results in more and
dust collapse, are stable under small changes in the equatiomore particles being produced. Thus there is a maximum
of state. temperaturdl ; that a hadronic system can achieve. The sta-

The growth of the Weyl curvature is examined in two tistical model of the hadrons has been used to obtain a de-
examples of naked singularity formation in spherical gravi-scription of dense matter at densities exceeding nuclear den-
tational collapse dust and Vaidya space-time[16]. The sity. The Hagedorn phase also arises in theories containing
Weyl scalar diverges along outgoing radial null geodesics afundamental strings, because they have a large number of
they meet the naked singularity in the past. Although generahternal degrees of freedof31]. As a result of the existence
relativity admits naked singularities arising from gravita- of many oscillator modes the density of states grows expo-
tional collapse, the second law of thermodynamics could fornentially with single string energy. Thermodynamical quan-
bid their occurrence in nature. A simple model for a coronatities, such as the entropy, diverge at the Hagedorn tempera-
of a neutrino-radiating star showing critical behavior is pre-ture. If one considers an ensemble of weekly interacting
sented i 17]. The conditions for the existence or absence ofstrings at finite temperature, this behavior of the density of
a bouncgexplosion are discussed. The charged Vaidya met-states is thought to lead either to a limiting temperature or a
ric was extended to cover all of the space-timg18] and  phase transition, in which the string configuration changes to
the Penrose diagram for the formation and evaporation of ane which is dominated by a single long strif82]. The
charged black hole obtained. The covariant equations chahigh density Hagedorn phase of matter has been extensively
acterizing the strength of a singularity in spherical symmetryused in cosmology to describe the very early phases of the
and a slight modification to the definition of singularity evolution of the Univers¢33—36.
strength have been derived [ih9]. The idea of probing na- It is the purpose of the present paper to study the spheri-
ked space-times singularities with waves rather than wittcally symmetric gravitational collapse of the charged matter
particles has been proposed [i20]. For some space-times in the Hagedorn phase. In order to simplify the mathematical
the classical singularity becomes regular if probed withformalism we adopt the assumption that the high density
waves, while stronger classical singularities remain singulafluid moves along the null geodesics of a Vaidya type space-

In order to obtain the energy-momentum tensor for thetime. The Vaidya geometry, also permitting the incorporation
collapse of a null fluid an inverted approach was proposed byf the effects of the radiation, offers a more realistic back-
Husain[21]. First the stress-energy momentum tensor is deground than static geometries, where all back reaction is ig-
termined from the metric. Then the equation of state and theored. By adopting the Hagedorn equation of state for dense
dominant energy condition are imposed on its eigenvaluesnatter, the general solution of the field equations can be
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obtained in an exact form. For the sake of comparison we 1 9
also consider the collapse of matter described by the stiff — — (- gF*")=—4mj". (7)
Zeldovich equation of state. The conditions of formation of V=g ox*

naked singularities are obtained in both cases.

The present paper is organized as follows. The field equa-
tions describing the collapse of a Hagedorn fluid are writterP
down in Sec. Il. The general solution of the field equations is
presented in Sec. lll. The equation of the null outgoing geo-
desics and the conditions of the formation of the naked sin-

gularltles are dlspussed in S(_ac. IV. An astrophysical apphcanith q(u) being an arbitrary integration function. From the
tion of the formalism to explain the gamma ray bursts energ

emissions is described in Sec. V. In Sec. VI we discuss an@laxwell equationd6) and(7), it follows that the only non-
C ' vanishing components &f,,, areF,= — Fur=q(u)/r? and,

conclude our results.

Without any loss of generality the electromagnetic vector
otential can be chosen §8,7]

=, ®

consequently,
Il. GEOMETRY AND FIELD EQUATIONS qz(u)
In ingoing Bondi coordinatesur,f,¢) and with ad- Eu= r4 diag~1,1-1,D. ©
vanced Eddington time coordinate=t+r (with r=0 the
radial coordinate and decreasing towards the futuréhe For the energy-momentum tens@®) the gravitational

line element describing the radial collapse of a coherenfield equations take the forfi27]
stream of matter can be represented in the fi2i27

om(u.r) 1 om(u,r) 1 ) 10
m(u,r ——=zu(u,r),
ds?=—| 1— [ du2+ 2dudr+ r2(d 62+ sinfad¢?) 2 o 2"
(o
2 ém(u,r) 9%(u)

m(u,r) is the mass function and gives the gravitational r_2 ar =p(u,r)+ 4 1D
mass within a given radius. In the following we use the
natural system of units with8G=c=1. ) )

The matter energy-momentum tensor can be written in the _1om(ur) o(u,r)+ 9°(u) (12)
form [21,22] r or? ' re

T, =TO+T+E,,, 2 The stress-energy tens@} satisfies the dominant energy

condition if the following three conditions are met:
where

p=0, p=p, TupWw>0, (13

TO=nunl,l, 3)
) ] wherew? is an arbitrary timelike four-vector. The first two of
is the component of the matter field that moves along the null,ase conditions imply thatm/ar =0 and#?m/dr2<0. The
hypersurfacesi= const, former just says that the mass function either increases with
m r or is a constant, which is a natural physical requirement on
TEW)Z(’)JF PN, +1,0,)+pg,, ) it. To satisfy the first two of the dominant energy conditions
ne must impose an equation of state for the collapsing
atter.
Usually two different equations of state are used for the
1 description of matter at extremely high densities. One of the
szﬂ FuaFo— ZQWFaﬁF“B) (5) most widely investigated cases is the so-called causal limit of
the linear barotropic equation of state=(y—1)p, y
=const, corresponding tg=2, or the Zeldovich stiff fluid
equation of stat@=p.

The Zeldovich equation of state, valid for densities sig-
nificantly higher than nuclear densitieg;>10p,,., With
Pnuc= 10" glen?, can be obtained by constructing a relativ-
istic Lagrangian that allows bare nucleons to interact attrac-
tively via scalar meson exchange and repulsively via the ex-
change of a more massive vector me$86]. In the non-

represents the energy-momentum tensor of the collapsin
matter, and

is the electromagnetic contributioh, andn, are two null
vectors given by, =8¢} andn, = 3{1-[2m(u,r)/r]} 5%
—&{1), so thatl | *=n,n*=0 andl ,n*= -1 (with &) the
Kronecker symbogl[21,22. The energy density and pressure
in Eq. (4) have been obtained by diagonalizing the energy
momentum tensor obtained from the mefid].

The electromagnetic tensér, , obeys the Maxwell equa-

tions[37] relativistic limit both the quantum and classical theories
pr= pr= pr= yield Yukawa-type potentials_. At the highest_ densities th_e

my A | 7 A =0, (6) vector meson exchange dominates and by using a mean field
ax x> oxt approximation one can show that in the extreme limit of
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infinite densities the pressure tends to the energy demsity, With the use of the Hagedorn equation of state, #4), and
—p. In this limit the sound speed,=+dp/dp—1, and of Eq.(15), Eq.(12), can be written in the form
hence this equation of state satisfies the causality condition,

with the speed of sound less than the speed of [ig8}. 1| #*m(u,r)  g3(u) 1 | om(u,r)
An alternative approach to the equation of state at ultra- ~— | ar2 + r3 =Potpoln ﬁ 2 ar

high densities is based on the assumption that a whole host 0

of baryonic resonant states arise at high densities. In the qz(u)H

Hagedorn model the baryon resonance mass spectrum, that is - (16

the increase in the number of species of particles with mass r

between m and m+dm, is given by dN=N(m)dm

~a expMTy)/(mg+n?)'dm whereN(m)dm is the number By introducing a new variable

of resonances between massand m+dm. Fitting to the 1 am(ur)  q3u)
existent experimental data on baryon resonances show that w(u,r)zlnﬁzln 2 04 H 17
my=500 MeV anda=2.63x 10" MeV®? [39]. If dN in- Po por? ar r2

creased any faster as—o than in the above formula, the
partition function would not converge. Also the partition it iS easy to show that
function converges only if the temperature of the system is

less thanT,. Thus Ty, the Hagedorn temperature, is the 1 |#*m(u,r) N Q*(w| (1 07W+1 18
effective highest temperature for any system. By interpreting pol | gr2 '3 AT - (18
the transverse momentum distribution of secondaries in very
high energy collisions in terms of the model one obtains Therefore Eq(16) becomes
Ty~150-190 MeV andl=5/4 [39]. The corresponding
equation of state for the matter is W a+w+eV
f—=—-2——+—, (19
or eV
—Po+po I 14

P=Po™ po npo’ (14) wherea=py/po~0.25. By integrating Eq(19) we obtain
where po=0.314x 10 g/cn? and po=1.253x 101 g/cn? LA }f e” dw| = ex;{ N EF(W)}
[40,41. The velocity of sound in this type of matter s C(u) 2) a+wtev 2 ’
=+/po/p. For the Hagedorn equation of state the speed of (20

sound has the propertgg— 0 for p/pg— e, in striking con-
trast with the mean field theory approach, leading to the ZelwhereC(u) is an arbitrary integration function and we de-
dovich equation of state, in which—1. The Hagedorn noted F(w)=[[e"/(a+w+e")]dw. Equation (20) for-
equation of state creates new “particles” continuously with mally definesw as a function ofp=r/C(u), w=H(7). The
increasing density, rather than enlarging the Fermi sea of ¥ariation of the mass function is described by the equation
single species. The equation of statd) could be valid as-
ymptotically for densities greater than about 10 times the am(u,r)  g*(u)
nuclear densityp,=2x 10 g/cn?. The vacuum boundary 2 < (2
of the initial matter distribution is defined by the equation
p=0, a condition corresponding to a surface dengity having the general solution given by
=poe Y4~0.778< 10" g/cn?, two times smaller in magni-
tude as the nuclear density. This condition also defines the g°(u) (12)F (W)
physical radius of the initial matter distribution and definesa ~ 2mM(u,r)=D(u)— We
boundary for the null fluid.

Hence, as a possible physical model to describe high- 3
density matter in the final stages of the gravitational collapse 0o exp 2w— 5 F(w)
we shall adopt the Hagedorn equation of state. In the follow- - ?C3(u)f w dw, (22
ing section we present the general solution of the gravita- atw+e
tional field equations for the null Hagedorn fluid.

+p0r2ewl (21)

whereD(u) is an arbitrary integration function. In the fol-
lowing we shall also denote:
I1l. SPHERICAL COLLAPSE OF THE HAGEDORN NULL

FLUID F{ 3 }
expg 2w— = F(w)
From Eq.(11) we immediately obtain K(W)=J' 2 dw. 23
at+w+e"
2
plu.r) = ! zam(u,r) _ g . (15) The density and the pressure of the collapsing null Hage-
Po por? ar r2 dorn fluid are given by
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p(W)=pg eXp(W), pP(W)=po+pow. (24

The energy density. of the radiation moving along the
u=const null hypersurfaces is given by

M(ulr): we':(w)_ Me(s/z)':(w)
C23(u) C3(u)
3p0. Po - ezW_F(W) dH
———C(u eF(W)K w)+ —C(u - T
2 W W3 ()a+W+er77
(25)

where a dot denotes the derivative with respeat.to

The functionr/C(u) can be represented as a power series

of the parametew in the form

r 2w w?  we 13wt 36°
cw 5 5 5 1500

60

+08[w],
(26)

5 5

while the functionK(w) has the power series representation

351w° Lo
625 [w.

(27)

In the limit of large densitiep— o, which also implies
w—oo, Eq. (19 becomes

4w 8w? 52w° 50w
25 V725 " 125

+

w 2 28
rEN— ) (28)
with the general solution given by
C(u)
w(u,r)=In > (29
r

Therefore in the asymptotic limit of very high densities,
corresponding tor—0, the gravitational collapse of the
Hagedorn null fluid is described by the equations

q%(u)
2m(u,r)=D(u)+ poC(u)r— s (30
C(u) C(u)
pUN=po=5=, PUN=PotpoIn—75=, (31
. S
D o 2ad (32)

U~ —+po—— —.
p(u,r) 2P TS

In order to find the behavior of the solution in the oppo-

PHYSICAL REVIEW D68, 064005 (2003

+w;(u,r), with wy(u,r) a small perturbation satisfying the
condition|w,(u,r)|<|wg|, ¥V u,r. Substituting into Eq(19)
gives

W,

r——~-—

ar

wy +eWse1 (1+s)w,+s

s(1+w,) '

- (33

e"se™1

where we denoteds=expfvy)~exp(—1/4)~0.778. Hence
for larger the solution of Eq(33) is given by

s N sins . s I[1+
w n
1+ (1452 (1+s)?

+C'(u),

+s
wq|=-—2Inr
S

(34

whereC’(u) is an arbitrary integration function. Since we
have assumed that,(u,r) is small, we can neglect in Eq.
(34) the term containing the logarithmic function. Hence
near the vacuum boundary of the high density Hagedorn
fluid distribution we obtain

C(u)

W%W0+|n r2k y (35)

where wy=ws/(1+s)~—0.10, k=(1+s)/s=2.284, and

C(u) is an arbitraryu-dependent integration function.
Therefore in the limitr —c the general solution of the

gravitational field equations can be approximated by

. q2(u) pOeWO —2k
2m(u,r)~D(u)—T+mC(u)r3 2
q°(u) C(u)
~D(U)~ —— 06055 (36)
C(u C(u
p(u,r)~pee"° I’(2k)% : o—ri_;,g, (37)

C(u) C(u)
p(u’r)wpo+p0W0+p0 |nW%po 0.15+1In r4'56 y
(38
__D(u) 2qu)q(u)  2pee".
p(u,r)=2 2 r3 3—2k\’(u)rl ’
D 2q(u)c C
) r(:l)_ q(li)ng)—%&o()%, (39

site limit of large, but finiter, we note first that the boundary whereD(u) is an arbitrary integration function.
of the Hagedorn type matter distribution is defined by the The variation of the ratiad/C(u) as a function ofw is
equationp=0, corresponding to a value of the parameterrepresented, by using EO), in Fig. 1.

W=Wg= —po/po~ —1/4. Values ofw<wy lead to the un-

As one can see from the figure, in the linvit—wg=

physical situation of negative pressure matter distribution,—0.25, the ratior/C(u) tends to 1, while for largev, w
p<0 forw<wys. In order to find the behavior of the solution — o, that is, in the limit of very high densities/C(u) tends
near wg, we representw(u,r) in the form w(u,r)=ws  to zero. Values oiv<wg= —0.25 lead to the violation of the
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FIG. 1. Variation of the rati@/C(u) as a function of the param-
eterw.

dominant energy conditiop=0. The functionK(w) is rep-
resented, as a function ofC(u), in Fig. 2.

PHYSICAL REVIEW D 68, 064005 (2003

The energy-momentum tensor of the mixture of fluids un-
der consideration belongs to the type-II flui@l]. The en-
ergy conditions are the weak, strong, and dominant energy
conditionsu=0, p=0, p=0, p=p=0 and can be satisfied
for both Hagedorn and Zeldovich fluids by appropriately
choosing the arbitrary functioné(u), B(u), C(u), and
D(u) that characterize the injection and initial distribution of
the mass and(u) that describes the variation of the charge.
For the Hagedorn fluid the conditions==0 andp=0 are
trivially satisfied for the values of the parametsrin the
rangew e (wg,%), corresponding to the range of densities of
pe(ps,®), with wg=—0.25 and ps=0.78x 10" g/cn?.

Due to the choice of the parameters in the equation of state
the dominant energy conditiop=p is also satisfied. The
condition =0 is equivalent tadm/du=0, and in the ap-
proximation of high densities leads to

For the sake of comparison we shall also present the so-

lution of the gravitational field equations corresponding to

the collapse of the charged null Zeldovich fluid wijik= p.
In this case Eqs(11) and(12) give immediately

2 om(u,r) . 1#m(ur)

p2or r or2 0. (40
with the general solution given by
A%(u)
m(u,r)=B(u)— , (41

r
whereA(u) andB(u) are arbitrary integration functions.

The other physical quantities characterizing the collapsin
Zeldovich fluid are given by

2A%(u)—g*(u)

p(u,r)=p(u,r)= ” (42)
B (dB 2 dA)
M(U,r)—r—z Ju T AWGL] (43

In all these cases the electromagnetic current follows from
the Maxwell equatiori7) and can be generally represented as

1 dq(uw)
_471'I’2 du

|, (44)

0.2 0.4 0.

r/C(u)

6 0.8

FIG. 2. Variation ofK(w) as a function of /C(u).

dD(u)
du

dC(u)
du

dg(u) 1
du r’

+po r=2q(u) (45)

imposing a simultaneous constraint on all three functions
C(u), D(u), andq(u). For small values ofr and for a
charged collapsing high density fluid, the right-hand side of
Eq. (45 dominates and this energy condition could not hold.
One possibility to satisfy Eq45) for all r is to assume that
the functiong(u) behaves so thatq?(u)/du—0 for r—0.
This means that the charge in the singular paistO is
constant for all times. Alternatively, we may suppose that at
extremely small radii matter is generated so as to satisfy the
energy condition. For neutrg=0 matter Eq.45) is easily
satisfied by choosinglC(u)/du>0 anddD(u)/du>0. In
9he case of the Zeldovich fluid the energy conditions are
satisfied by choosing the functions, B, and q so that
A2(u)=q?(u)/2 andB(u)=2A(u)A(u)/r.

The radii of the apparent horizon of the met(it) are
given by the solution of the equation m=r. If
lim,_,,C(u)=Cqy=const, lim,_.D(u)=Dgy=const and
lim,_,..q(u)=qge=const, then the algebraic equation deter-
mining the radii of the apparent horizons in the case of the
Hagedorn fluid is

a9
20 q2Fw _p |

Coe (2FMW 4 PO 3 () 4 (46)
2 Co

which in general may have multiple solutions.

In the case of the collapse of the Zeldovich fluid the radii
of the apparent horizon are given by the solutions of the
equation

AS

ZBO_ZT:r, (47)

where Ay=lim,_.,C(u)=const and By=Ilim,_.D(u)
=const. The radii of the apparent horizon are

r1,=Bo* VBj—2A3.

The singularities of the matter filled Vaidya space-time
can be recognized from the behavior of the energy density

(48)
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and curvature scalars like, e.giaBR“B and RaﬁyﬁR“BV‘s, given in the high density limit for the collapsing Hagedorn fluid by

2

RagR™= 5 L1*paC7(W) +2r%poClu)a’(w) +29"(W)], (49)

r*p2C2(u)—2r3poC(u)D(u) +3r2D?(u) — 2r2peC(u)g?(u) + 12rD (u)g?(u) + 14g*(u)
RaﬁyaRa375:4 Po Po . Po q q 4q ’ (50

r
and which diverge for —0.
|

IV. OUTGOING RADIAL NULL GEODESICS EQUATION for the formation of a naked singularity 8,<<1/8. For B,

>1/8, as a result of the collapse of the Hagedorn type fluid,

The central shell-focussing singularifiye., that occurring a black hole is formed

atr=0) is nakeq .'f the radial null-geodesic equation admits For q(u) #0 the condition of the existence of at least one
one or more positive real roo¥, [2]. In the case of the pure real solution of Eq(53) is

Vaidya space-time it has been shown that for a linear mass q
function 2m(u)=Au the singularity ar =0, u=0 is naked 10802 + 402+ 8 33= B2+ 368.02. 54

for A<3 [42]. Hence it is important to investigate whether Blo 4do+ 86> Fo Bl (54

the gravitational collapse of high density matter described byrherefore, by appropriately choosing the constapisand

the Hagedorn and Zeldovich equations of state could resulg, it is always possible to construct a positive solution of
in the formation of naked singularities. Eq. (53).

We consider first the case of the gravitational collapse of |n the case of the collapse of the Zeldovich fluid and by
the Hagedorn fluid. In order to simplify the calculations we gssuming for the arbitrany-dependent integration functions
chose some simple particular expressions for the functionghe form A(u)=ayu and B(u)=byu, with ay,b, non-
C(u), D(u), andq(u), e.g.,C(u)=aou, D(u)=pBou, and  negative constants, the equation of the radially outgoing,
q(u)=dgou, with >0, Bo>0 andge=0 const. With this  fyture-directed null geodesic originating at the singularity is
choice the equation of the radially outgoing, future-directed

null geodesic originating at the singularity can be written as du 2
dr u 5
du 2 1—bo| —|+af| -
= iy . (51) r r
dr u ofu pPo®g (U
1=Bo| 7| +do| 7| + U /KW The algebraic condition for the formation of a naked singu-

larity is given by the requirement that the equation,

For the geodesic tangent to be uniquely defined and to

exist at the singular point=0,u=0 of Eq. (51) the follow-
ing condition must hold2]:

agX3—boX2+Xo—2=0, (56)

has at least one positive ro¥y>0. The condition that the

y du above equation has at least one real root can be written as

lim —= Iim —=X,. (52
ur—of u,r—>0dr ag 1-8b,

>—— 7 (57)
b5 1083 36b,+4

When the limit exists an&, is real and positive, there is

a future directed, non-space-like geodesic originating from  This condition can be satisfied, for example, by choosing

r=0,u=0. In this case the singularity will be, at least, lo- bo<1/8 anday,>1/\/216. Therefore, as in the case of the

caIIy_ naked. . o charged Hagedorn fluid, it is always possible to construct a
Since the functiorK(w) is finite for all w=H(r/C(u)), positive solution of Eq(56).

and we assume that ljm_ ou/r is also finite, it follows that
Iimu,HOuz(u/r)K(w)=O. Therefore it follows that for the
null geodesic Eq(51) condition(52) leads to the following
third order algebraic equation:

V. COLLAPSING HAGEDORN MATTER—A POSSIBLE
SOURCE OF GAMMA-RAY BURSTS

s ) Gamma-ray burst§GRBS are cosmic gamma ray emis-
0oXo— BoXot Xp—2=0. (63)  sions with typical fluxes of the order of 106 to 5
X 10~* erg cm 2 with the rise time as low as 10 s and the
In the case of a neutral Hagedorn fluid wigtu)=0, Eq.  duration of bursts from 10’ to 10° s [43]. The distribution
(53) reduces to a second order algebraic equation with twaf the bursts is isotropic and they are believed to have a
roots, Xo; ,=(1*V1—8p0)/2By. Therefore the condition cosmological origin, recent observations suggesting that
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GRBs might originate at extra-galactic distan¢d8]. The  strongly. During the collapse naked singularities could emit
large inferred distances imply isotropic energy losses as largeowerful bursts of radiation visible to a distant external ob-
as 3x10°% erg for GRB 971214 and 3:410°* erg for GRB  server situated far away from the sight of the collafis@.
990123[44]. In the present section we shall use CGS units. As a first physical parameter we need to estimate is the
The widely accepted interpretation of the phenomenology ofime t¢; necessary for a matter element at the surface of the
v-ray bursts is that the observable effects are due to thetar to reach the center=0 of the collapsed object, as a
dissipation of the kinetic energy of a relativistically expand-function of the mass at the center. This can be done by evalu-
ing fireball, whose primal cause is not yet knoj48]. ating the time derivative of the mass, given by E2) with
The proposed models for the energy source involve th€|=0, at the center of the naked singularity:

merger of binary neutron stafg45], the capture of neutron dD(W)

u

.

[47], or neutron star-quark star conversipt8], etc. How- dt rZO_ZG

ever, the most popular model involves the violent formation

of an approximately one solar mass black hole, surrounded By integrating the above equation frob+=0 to t;; we

by a similarly massive debris torus. The formation of theobtain

black hole and debris torus may take place through the coa-

lescence of a compact binary or the collapse of a quickly

rotating massive stellar cofd9]. There are still many open M

problems concerning GRBs, from which the most important

is the problem of the source of the large energy emissiomvhere we assumed(0)|,—,=0 and denotedm(ts)],o

during the bursts. On the other hand, naked singularities asM|,_,=0. In order to find an explicit expression foy

sources ofy-ray bursts have also been propog&0-523.  we shall approximate the integral in E(9) by using the

The fact that explosive radiation can be emitted during theirst mean value theorem for integrals, which states that for

gravitational collapse to a naked singularity of a dust ball haginy arbitrary functionf(t), fgf(t)dt: (b—a)f(c), where

also been pointed out recently b§3]. _ a<c<b. f(c) is called the average value bfHence, in the
As an astrophysical application of the Hagedorn fluid col-following we shall approximate the derivatives of the arbi-

lapse in the Vaidya geometry we consider the possibility thatrary the arbitrary integration functions and the functions

gamma-ray bursts could in fact be energy emission duringhemselves by their average values. Therefore from(&).
the collapse of a neutraj=0, high density matter in the \ye obtain

Hagedorn phase, ending with the formation of a naked sin-

stars by black holeg46], differentially rotating neutron stars dm c?
du

(58)

cd thf<dD(U)

=== — dt, (59
r=0 2G 0 du )r—o

gularity. An estimation of the energy emitted during the col- 2G
lapse shows that it is of the same order of magnitude as the t=——M , (60
one measured during-ray bursts. Hence this mechanism CBo |

could provide a valuable explanation for this phenomenon,
also opening the possibility of the observational investigatiovhere we denoted bg,=0 the average value of the func-
of the astrophysical properties of the naked singularities. tion [dD(u)/du];—o, Bo=[dD(t)/d(t)];—,, where 0<6
The arbitrary integration function€(u) and D(u) ap-  <lefr- o _
pearing in Eq(22) describe the injection and initial distribu- The initial mass distribution of the Hagedorn fluid can be
tion of the mass, respectively. Their exact mathematical fornpbtained from the study of the mass distribution at the initial
cannot be obtained in the framework of the present formalmomentt=0:
ism. The only requirements that the functional form of these
functions must satisfy are the dominant energy conditions -
and the condition that the equation of the radially outgoing, dr
future-directed null geodesics, originating at the singularity
r=0, be uniquely defined and exist at the singular point By integrating this equation, and using again the first
=0 and has at least one positive root. A positive root of themean value theorem, it follows that the initial mass profile of
geodesic equation leads to the possibility of formation of ethe Hagedorn fluid can be represented as
naked singularity as a result of the collapse. Some simple
integration functions satisfying the condition on the geodesic
equation, as well as the dominant energy conditions, are, for
example,C(u) = aqu,D(u) = Bou, with ay>0,8,>0 con-
stants. With this choice a naked singularity may form duringwhere ¢o=0 is the average value of thedependent func-
the collapse of the Hagedorn fluid if and only if the algebraiction h(r)=[dD(u)/du+ por(dC(u)/du)]|;—=o, With the
equationﬁOXS—XOJrZ:O has at least one positive rodf; ~ functionh(r) estimated at some point o, 0<o <R, with
>0. This condition requireg,<1/8. Of course many other R the radius of the Hagedorn fluid distribution. Heneg
choices are also possible. =h(o). From this equation we can see that our approach
Naked singularities are gravitational singularities that arémplies a linear profile of the initial mass distribution of the
not covered by a horizon. Near the singularity the space-timstar. «(, the average value of the spatial derivatives of the
curvature and the gravitational tidal forces grow veryintegration function®(u) andC(u) att=0, is completely

C2

o 2G

dm dD(u)

du

N dC(u)
polf ——
-0 du

}. (61
t=0

CZ

m(r) =5g ol

(62

t=0
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determined by the initial conditions, which is by the total the average values of the derivatives of the arbitrary integra-
initial mass of the staM|;_, and by its initial radiusR via  tion functions. By assuming an emission time of the order of

the relation At~10“s and a velocity of the collapsing matter of the
orderv;=6x10® cm/s we obtain a value of the emitted en-

2GM|;_ ergy AE,~1.85¢{Bo+4mag(vi/c)[1+(vi/c)] 1}
0= o (63 x 105 erg. Therefore the energy which could be emitted

during the collapse of the Hagedorn fluid to a naked singu-
In order to calculate the energy emitted during the Hagel‘ar"‘y4‘3OLJIOI exceed in magnitude the energyk,~4
dorn fluid collapse we shall admit that the luminosity of the 10" erg, observed for GRB99012314]. Of course the _
collapsing object should not exceed the rate of collapsing*act value of the energy depends on the exact numerical
matter energy[52]. The variation of the mass of the high values of the constants, and 8o. By comparing Eq/(66)

density fluid during collapse is given by with the observational data it is possible to determine the
values ofaqy and Bg.
2Gm(u,r) Under the effect of the collapse the compact object will
————=[AD(u)+por AC(u) + poC(u)Ar] heat up to a temperature of the order ©f Ty~10" K,
c higher than that occurring in supernova explosions. Sihge
dD(u) dc(u) cannot_be exceeded_, the gravitational energy o_f the compact
~[ au +p0rWAU+pOC(u)Ar} object is converted into new particles, which will be gener-

ated during the collapse. Most of the newly created particle
(64)  will decay via weak interaction processes. As a result a neu-

trinosphere will form around the naked singularity. Therefore
The variation of the advanced time coordinatés given  the main energy loss mechanism of the super-heated col-

by the approximate expression lapsed astrophysical object would be neutrino radiation. The
neutrinos and antineutrinos interact with protons and neu-

Au=cAt—+Ar=cAt 1+££)%CM 1+ ﬁ) trons via the URCA processeas+ v,—p+e , p+ve.—n
c At c/ +e™. At temperatures higher than the nuclear Fermi tem-

_ B _ peraturek T"N=(672/g)?3(#/2m)(N/V)?3, which can also
where we defined;=Ar/At as being the speed of the col- be expressed in the formEiN: 147X 1073P§/3 [49], the in-

Igionsmg fluid as measured by a local observer. Then we o egrated optical neutrino depth is unity. Hence the deposition

energy can bg estimated Bs-(1—e™ ")AE, ergs. The pro-
cessy+y—e" +e  will generate a fireball that will expand
A2(3m(u,r) %[dD(u) +p0rdC(u) +p0C(U)ﬂ(1 outward. The expanding shell interacts with the interstellar
2 du du c medium surrounding the Hagedorn type naked singularity,
and the kinetic energy is finally radiated through nonthermal
At. (65) processes in shock48].
The energy released during the collapse of the Hagedorn
and radiation fluids into a naked singularity has the same
We assume that the energy emission occurs mainly from grder of magnitude as that observed in the case of gamma
small region near the center of the naked singularity. Henceay bursts. This strongly suggests the possibility that gamma
we shall evaluate Eq65) nearr very close to zero. Then ray bursts could be massive compact objects, formed from a

from Eq. (58) we can roughly approximat&lD(u)/du  Hagedorn fluid, collapsing to a naked singularity in a cosmo-
%(ZG/ca)(dm/dt)%ZG/C3(M/tff)=Bo. Since for a small logical environment.

r, C(ct+r)~C(ct), we can also neglect in this limit the
term por[dC(u)/du]. From the field Eq(11) and from Eq.
(24) it immediately follows that Rom(u,r]/dr)
=(87G/c?)r2p~pyC(u). Taking into account Eq(62) we In the present paper we have considered the collapse of a
immediately findpoC(u)~4mray~(87GM/c’R). The ve- Hagedorn type fluid in the Vaidya geometry. The exact solu-
locity vs of the collapsing matter can be obtained from  tion obtained represents the generalization for the Hagedorn
~RIti=(c®RBy)/(2GM|,_o). type matter of the collapsing solutions previously obtained
With the use of the previous results we obtain for the totaloy Vaidya[3], Bonnor and Vaidy6], Lake and Zanniaf7],
energy emitted per unit time during the collapse of a Hageand Husain[21]. From a mathematical point of view the
dorn fluid to a naked singularity the expression: solution is represented in a parametric form. It satisfies all
the energy conditions and consequently describes the col-
lapse to a singular state. The possible occurrence of a central
naked singularity has also been investigated and it has been
(66) shown that, at least for a particular choice of the parameters,
a naked singularity is formed. Depending on the initial dis-
Hence we have expressed the total energy of the radiatiomibution of density and velocity and on the constitutive na-
which could be emitted from a naked singularity, in terms ofture of the collapsing matter, either a black hole or a naked

c

ve| Ut
+— cl1+—
c c

VI. CONCLUSIONS

5

c
G e st

AE, 1
At 2

Ut
B0+47Ta0?

.
1+—f)
C

Us
1+ —
C

064005-9



T. HARKO PHYSICAL REVIEW D 68, 064005 (2003

singularity is formed. The values of the parameters in thestudy of properties of collapsing objects. It also serves to
solution(22) and(24) determine which of these possibilities illustrate the much richer interplay that can occur among
occurs. The solution describing the collapse of both thearticle physics and general relativity, when more involved

Hagedorn and Zeldovich matter is asymptotically flat, butquantum field theoretical models are considered.

this condition does not play any significant role in the for-

mation of the naked singularity.

As a possible simple astrophysical application of this col-
lapsing solution we have considered the possibility that

The Hagedorn type matter may reside as a permanemfamma ray bursts could be energy emission during the col-
component of neutron stars core at high temperatures or detapse of a high density star, ending in the formation of a
sities and form stable compact stellar objects. In fact, from anaked singularity. The radiated energy during this process
physical point of view, it seems that the high density limit for could be as high as $®ergs. Thus the naked singularity
the equation of state described by the Hagedorn equation @xplosion could be a candidate for the central engine of a
state is one of the best and more realistic candidates for thgamma ray burst.
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