4 research outputs found

    Search for WH production with a light Higgs boson decaying to prompt electron-jets in proton-proton collisions at s\sqrt{s}=7 TeV with the ATLAS detector

    Get PDF
    A search is performed for WH production with a light Higgs boson decaying to hidden-sector particles resulting in clusters of collimated electrons, known as electron-jets. The search is performed with 2.04 fb-1 of data collected in 2011 with the ATLAS detector at the LHC in proton-proton collisions at s\sqrt{s}=7 TeV. One event satisfying the signal selection criteria is observed, which is consistent with the expected background rate. Limits on the product of the WH production cross section and the branching ratio of a Higgs boson decaying to prompt electron-jets are calculated as a function of a Higgs boson mass in the range from 100 GeV to 140 GeV.Peer Reviewe

    Measurement of W(+/-)Z production in proton-proton collisions at root s=7 TeV with the ATLAS detector

    No full text
    A study of W(+/-)Z production in proton-proton collisions at root s = 7 TeV is presented using data corresponding to an integrated luminosity of 4.6 fb(-1) collected with the ATLAS detector at the Large Hadron Collider in 2011. In total, 317 candidates, with a background expectation of 68 +/- 10 events, are observed in double-leptonic decay final states with electrons, muons and missing transverse momentum. The total cross-section is determined to be sigma(tot)(WZ) = 19.0(-1.3)(+1.4)(stat.) +/- 0.9(syst.) +/- 0.4(lumi.) pb, consistent with the Standard Model expectation of 17.6(-1.0)(+1.1) pb. Limits on anomalous triple gauge boson couplings are derived using the transverse momentum spectrum of Z bosons in the selected events. The cross-section is also presented as a function of Z boson transverse momentum and diboson invariant mass

    Search for new phenomena in events containing a same-flavour opposite-sign dilepton pair, jets, and large missing transverse momentum in root s=13 TeV pp collisions with the ATLAS detector

    Get PDF
    Funded by SCOAP

    Performance of the ATLAS track reconstruction algorithms in dense environments in LHC Run 2

    No full text
    With the increase in energy of the Large Hadron Collider to a centre-of-mass energy of 13 TeV for Run 2, events with dense environments, such as in the cores of highenergy jets, became a focus for new physics searches as well as measurements of the Standard Model. These environments are characterized by charged-particle separations of the order of the tracking detectors sensor granularity. Basic track quantities are compared between 3.2 fb(-1) of data collected by the ATLAS experiment and simulation of protonproton collisions producing high-transverse-momentum jets at a centre-of-mass energy of 13 TeV. The impact of chargedparticle separations and multiplicities on the track reconstruction performance is discussed. The track reconstruction efficiency in the cores of jets with transverse momenta between 200 and 1600 GeV is quantified using a novel, datadriven, method. The method uses the energy loss, dE/ dx, to identify pixel clusters originating from two charged particles. Of the charged particles creating these clusters, themeasured fraction that fail to be reconstructed is 0.061 +/- 0.006 (stat.) +/- 0.014 (syst.) and 0.093 +/- 0.017 (stat.) +/- 0.021 (syst.) for jet transverse momenta of 200-400GeV and 1400-1600GeV, respectively
    corecore