321 research outputs found

    Evidence-Based Phonics Game

    Get PDF

    Loss of HIF-1α accelerates murine FLT-3ITD-induced myeloproliferative neoplasia.

    Get PDF
    Hypoxia-induced signaling is important for normal and malignant hematopoiesis. The transcription factor hypoxia-inducible factor-1α (HIF-1α) plays a crucial role in quiescence and self-renewal of hematopoietic stem cells (HSCs) as well as leukemia-initiating cells (LICs) of acute myeloid leukemia (AML) and chronic myeloid leukemia (CML). We have investigated the effect of HIF-1α loss on the phenotype and biology of FLT-3(ITD)-induced myeloproliferative neoplasm (MPN). Using transgenic mouse models, we show that deletion of HIF-1α leads to an enhanced MPN phenotype reflected by higher numbers of white blood cells, more severe splenomegaly and decreased survival. The proliferative effect of HIF-1α loss is cell-intrinsic as shown by transplantation into recipient mice. HSCs loss and organ specific changes in number and percentage of long-term hematopoietic stem cells (LT-HSCs) were the most pronounced effects on a cellular level after HIF-1α deletion. Furthermore, we found a metabolic hyperactivation of malignant cells in the spleen upon loss of HIF-1α. Some of our findings are in contrary to what has been previously described for the role of HIF-1α in other myeloid hematologic malignancies and question the potential of HIF-1α as a therapeutic target.Leukemia accepted article preview online, 24 June 2015. doi:10.1038/leu.2015.156

    HIF-1α can act as a tumor suppressor gene in murine Acute Myeloid Leukemia.

    Get PDF
    Self-renewal of hematopoietic stem cells (HSCs) and leukemia-initiating cells (LICs) has been proposed to be influenced by low oxygen tension (hypoxia). This signaling, related to the cellular localization inside the bone marrow niche and/or influenced by extrinsic factors, promotes the stabilization of hypoxia inducible factors (HIFs). Whether HIF-1α can be used as a therapeutic target in the treatment of myeloid malignancies remains unknown. We have used three different murine models to investigate the role of HIF-1α in acute myeloid leukemia (AML) initiation/progression and self-renewal of LICs. Unexpectedly, we failed to observe a delay or prevention of disease development from hematopoietic cells lacking Hif-1α. In contrast, deletion of Hif-1α resulted in faster development of the disease and an enhanced leukemia phenotype in some of the investigated models. Our results therefore warrant a reconsideration of the role of HIF-1α and, as a consequence, question its generic therapeutic usefulness in AML

    Hypoxic induction of vascular endothelial growth factor regulates murine hematopoietic stem cell function in the low-oxygenic niche.

    Get PDF
    Hypoxia is emerging as an important characteristic of the hematopoietic stem cell (HSC) niche, but the molecular mechanisms contributing to quiescence, self-renewal, and survival remain elusive. Vascular endothelial growth factor A (VEGFA) is a key regulator of angiogenesis and hematopoiesis. Its expression is commonly regulated by hypoxia-inducible factors (HIF) that are functionally induced in low-oxygen conditions and that activate transcription by binding to hypoxia-response elements (HRE). Vegfa is indispensable for HSC survival, mediated by a cell-intrinsic, autocrine mechanism. We hypothesized that a hypoxic HSC microenvironment is required for maintenance or upregulation of Vegfa expression in HSCs and therefore crucial for HSC survival. We have tested this hypothesis in the mouse model Vegfa(δ/δ), where the HRE in the Vegfa promoter is mutated, preventing HIF binding. Vegfa expression was reduced in highly purified HSCs from Vegfa(δ/δ) mice, showing that HSCs reside in hypoxic areas. Loss of hypoxia-regulated Vegfa expression increases the numbers of phenotypically defined hematopoietic stem and progenitor cells. However, HSC function was clearly impaired when assessed in competitive transplantation assays. Our data provide further evidence that HSCs reside in a hypoxic microenvironment and demonstrate a novel way in which the hypoxic niche affects HSC fate, via the hypoxia-Vegfa axis

    Antilymphocyte globulin for matched sibling donor transplantation in patients with myelofibrosis

    Get PDF
    The use of antihuman T-lymphocyte immunoglobulin in the setting of transplantation from an HLA-matched related donor is still much debated. Acute and chronic graft-versus-host disease are the main causes of morbidity and mortality after allogeneic hematopoietic stem cell transplantation in patients with myelofibrosis. The aim of this study was to evaluate the effect of antihuman T-lymphocyte immunoglobulin in a large cohort of patients with myelofibrosis (n= 287). The cumulative incidences of grade II-IV acute graft-versus-host disease among patients who were or were not given antihuman T-lymphocyte immunoglobulin were 26% and 41%, respectively. The corresponding incidences of chronic graft-versus-host disease were 52% and 55%, respectively. Non-adjusted overall survival, disease-free survival and non-relapse mortality rates were 55% versus 53%, 49% versus 45%, and 32% versus 31%, respectively, among the patients who were or were not given antihuman T-lymphocyte immunoglobulin. An adjusted model confirmed that the risk of acute graft-versus-host disease was lower following antihuman T-lymphocyte immunoglobulin (hazard ratio, 0.54; P= 0.010) while it did not decrease the risk of chronic graft-versus-host disease. The hazard ratios for overall survival and non-relapse mortality were 0.66 and 0.64, with P-values of 0.05 and 0.09, respectively. Antihuman T-lymphocyte immunoglobulin did not influence disease-free survival, graft-versus-host disease, relapse-free survival or relapse risk. In conclusion, in the setting of matched related transplantation in myelofibrosis patients, this study demonstrates that antihuman T-lymphocyte immunoglobulin decreases the risk of acute graft-versushost disease without increasing the risk of relapse.Peer reviewe

    Metabolic and Innate Immune Cues Merge into a Specific Inflammatory Response via the UPR

    Get PDF
    Erratum in : Metabolic and Innate Immune Cues Merge into a Specific Inflammatory Response via the UPR. [Cell. 2019]International audienceInnate immune responses are intricately linked with intracellular metabolism of myeloid cells. Toll-likereceptor (TLR) stimulation shifts intracellular metabolism toward glycolysis, while anti-inflammatorysignals depend on enhanced mitochondrial respiration. How exogenous metabolic signals affect theimmune response is unknown. We demonstrate that TLR-dependent responses of dendritic cells (DC)are exacerbated by a high fatty acid (FA) metabolic environment. FA suppress the TLR-inducedhexokinase activity and perturb tricarboxylic acid cycle metabolism. These metabolic changesenhance mitochondrial reactive oxygen species (mtROS) production and, in turn, the unfolded proteinresponse (UPR) leading to a distinct transcriptomic signature, with IL-23 as hallmark. Interestingly,chemical or genetic suppression of glycolysis was sufficient to induce this specific immune response.Conversely, reducing mtROS production or DC-specific deficiency in XBP1 attenuated IL-23expression and skin inflammation in an IL-23-dependent model of psoriasis. Thus, fine-tuning of innateimmunity depends on optimization of metabolic demands and minimization of mtROS-induced UPR

    Mutations and Deregulation of Ras/Raf/MEK/ERK and PI3K/PTEN/Akt/mTOR Cascades Which Alter Therapy Response

    Get PDF
    The Ras/Raf/MEK/ERK and PI3K/PTEN/Akt/mTOR cascades are often activated by genetic alterations in upstream signaling molecules such as receptor tyrosine kinases (RTK). Certain components of these pathways, RAS, NF1, BRAF, MEK1, DUSP5, PP2A, PIK3CA, PIK3R1, PIK3R4, PIK3R5, IRS4, AKT, NFKB1, MTOR, PTEN, TSC1, and TSC2 may also be activated/inactivated by mutations or epigenetic silencing. Upstream mutations in one signaling pathway or even in downstream components of the same pathway can alter the sensitivity of the cells to certain small molecule inhibitors. These pathways have profound effects on proliferative, apoptotic and differentiation pathways. Dysregulation of components of these cascades can contribute to: resistance to other pathway inhibitors, chemotherapeutic drug resistance, premature aging as well as other diseases. This review will first describe these pathways and discuss how genetic mutations and epigenetic alterations can result in resistance to various inhibitors

    The European Hematology Association Roadmap for European Hematology Research: a consensus document

    Get PDF
    The European Hematology Association (EHA) Roadmap for European Hematology Research highlights major achievements in diagnosis and treatment of blood disorders and identifies the greatest unmet clinical and scientific needs in those areas to enable better funded, more focused European hematology research. Initiated by the EHA, around 300 experts contributed to the consensus document, which will help European policy makers, research funders, research organizations, researchers, and patient groups make better informed decisions on hematology research. It also aims to raise public awareness of the burden of blood disorders on European society, which purely in economic terms is estimated at €23 billion per year, a level of cost that is not matched in current European hematology research funding. In recent decades, hematology research has improved our fundamental understanding of the biology of blood disorders, and has improved diagnostics and treatments, sometimes in revolutionary ways. This progress highlights the potential of focused basic research programs such as this EHA Roadmap. The EHA Roadmap identifies nine ‘sections’ in hematology: normal hematopoiesis, malignant lymphoid and myeloid diseases, anemias and related diseases, platelet disorders, blood coagulation and hemostatic disorders, transfusion medicine, infections in hematology, and hematopoietic stem cell transplantation. These sections span 60 smaller groups of diseases or disorders. The EHA Roadmap identifies priorities and needs across the field of hematology, including those to develop targeted therapies based on genomic profiling and chemical biology, to eradicate minimal residual malignant disease, and to develop cellular immunotherapies, combination treatments, gene therapies, hematopoietic stem cell treatments, and treatments that are better tolerated by elderly patients
    corecore