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Summary

Innate immune responses are intricately linked with intracellular metabolism of myeloid cells. Toll-like

receptor (TLR) stimulation shifts intracellular metabolism toward glycolysis,  while anti-inflammatory

signals depend on enhanced mitochondrial respiration. How exogenous metabolic signals affect the

immune response is unknown. We demonstrate that TLR-dependent responses of dendritic cells (DC)

are  exacerbated  by  a  high  fatty  acid  (FA)  metabolic  environment.  FA suppress  the  TLR-induced

hexokinase  activity  and  perturb  tricarboxylic  acid  cycle  metabolism.  These  metabolic  changes

enhance mitochondrial reactive oxygen species (mtROS) production and, in turn, the unfolded protein

response (UPR) leading to a distinct transcriptomic signature, with IL-23 as hallmark. Interestingly,

chemical or genetic suppression of glycolysis was sufficient to induce this specific immune response.

Conversely,  reducing  mtROS  production  or  DC-specific  deficiency  in  XBP1  attenuated  IL-23

expression and skin inflammation in an IL-23-dependent model of psoriasis. Thus, fine-tuning of innate

immunity depends on optimization of metabolic demands and minimization of mtROS-induced UPR.

Introduction

Metabolic adaptations play an important role in host response to pathogens (Wang et al., 2016; Weis

et al., 2017). Inflammatory responses are triggered by pattern-recognition receptors (PRRs), such as

Toll-like  receptors  (TLRs),  which  recognize  pathogen-associated  molecular  patterns  (PAMPs)

(Medzhitov, 2001). Inflammation is a tightly controlled process sensitive to dynamic changes in tissue

environment and to the intrinsic state of immune cells, both contributing to initiation and resolution of

inflammation (Netea et al., 2017). However, dysregulation of the transient inflammatory response can

result in chronic inflammatory diseases (Fullerton and Gilroy, 2016).

Recent evidence shows that metabolism of macrophages and DC plays a crucial role in inflammation

(O’Neill and Pearce, 2016). Both DC and macrophages undergo a robust increase of glycolysis after

acute activation by TLR agonists,  whereas mitochondrial  activity is suppressed in such conditions

(Krawczyk et  al.,  2010;  Tannahill  et  al.,  2013).  This shift  of  metabolic activity,  known as glycolytic

reprogramming, results in altered mitochondrial function, increased reactive oxygen species (ROS)

production, and elevated secretion of pro-inflammatory cytokines (Tannahil et al., 2013; Lampropoulou

et  al.,  2016;  Mills  et  al.,  2016).  Importantly,  processes that  drive  glycolytic  reprogramming in  M1

macrophages,  activated  by  the  TLR4  agonist  LPS,  are  down-regulated  in  IL-4-polarized  M2

macrophages (Jha et al., 2015) or in response to IL-10 (Ip et al., 2017).  In addition, a recent study

demonstrated that the key hallmarks of M2 macrophages are fatty acid oxidation (FAO)-independent

and are not regulated by mitochondrial respiration (Divakaruni et al.,  2018). Alterations of immune
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signaling have a profound impact on whole body metabolism in metabolic diseases such as obesity

and type 2 diabetes (Hotamisligil, 2017). Conversely, altered metabolic environment, for instance, due

to obesity, affects myeloid cells during the innate inflammatory response (Duan et al., 2018). Immune

cells sense environmental and metabolic cues that induce specialized stress responses in these cells

(Chovatiya and Medzhitov, 2014). Flexibility of immune cells to adapt to different metabolic demands

and  diverse  metabolic  milieu  via  dynamic  regulation  of  intracellular  metabolism  is  an  important

component of inflammation and tissue homeostasis (Gaber et  al.,  2017).  However, the underlying

molecular mechanisms remain poorly understood. We hypothesized that metabolic adaptations during

DC innate  immune  activation  might  be  sensitive  to  extracellular  metabolites  such  as  FA,  whose

concentrations are altered by nutritional status and in several metabolic diseases (Karpe et al., 2011).

Our  results  show that  FA enhance  TLR-mediated  innate  activation  by  inhibiting  hexokinase (HK)

thereby  impairing  the  glycolytic  reprogramming,  leading  to  disturbed  mitochondrial  fitness  and

increased mtROS generation. This results in an exacerbated unfolded protein response (UPR) and, in

turn, induces a distinct molecular signature and inflammatory response characterized by increased IL-

23 production. Thus, adaptation of glycolysis to the metabolic environment links mtROS production to

UPR activation and represents a specific mechanism regulating innate immunity.

Results

FA alter TLR-induced innate immune response

To study whether the metabolic environment modulates the innate immune response, we analyzed the

impact of FA on TLR-mediated activation of mouse GM-CSF bone marrow-derived DC (GM-DC). In

GM-DC,  PA,  a  common saturated FA in processed food diets,  alone did not  induce a  significant

expression of pro-inflammatory cytokines, but it  greatly modified  Il23a,  Il6, and  Il12a expression in

response to TLR activation (Figure 1A-B and S1A-C).  Moreover,  PA potentiated IL-23 expression

induced by activation of another PRR Dectin-2 (by furfurman), but not by Dectin-1 (by curdlan), as well

as by TNF, but not by IL-1 (Figure S1D). Likewise, PA robustly increased IL-23 expression upon

TLR4 and TLR7/8 activation in bone marrow derived macrophages (BMDM) (Figure S1E). These data

indicate that IL-23 expression is sensitive to the presence of a high FA metabolic environment.

Next, we focused on activation of DC with TLR7/8 ligand imiquimod (IMQ) which induced the strongest

synergistic effects with PA. Interestingly, PA only modified expression of a subset of cytokines and

chemokines among all induced by IMQ (Figure S1C), suggesting that FA promote a distinct innate

immune signature in TLR-activated DC.

PA modulates glycolysis in TLR-activated DC
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TLR  activation  rapidly  increases  glycolysis  in  DC  (Everts  et  al.,  2014;  Krawczyk  et  al.,  2010)

Furthermore, PA affects early TLR4 signaling in macrophages (Lancaster et al., 2018). Consequently,

we hypothesized that PA might modulate the DC inflammatory response either by acting as a signaling

molecule  or  by  altering  intracellular  metabolism.  Stimulation  of  GM-DC from wildtype  and  TLR4-

deficient mice with IMQ and PA resulted in similar IL-23 induction (Figure S2A). Moreover, the up-

regulation of IL-23 by PA was not due to NF-B signaling (Figure S2B) or JNK siganling (Figure S2C-

D). Furthermore,  the  monounsaturated  oleic  acid  (OA)  also  increased  IL-23  secretion  upon  IMQ

activation, independently of TLR4 (Figure S2E). Taken together, these results show that FA increase

IMQ-mediated IL-23 expression through a yet unknown mechanism. We thus investigated the impact

of  PA on  intracellular  metabolism  in  IMQ-stimulated  DC.  The  dose-dependent  increase  of  IL-23

expression and secretion upon IMQ and PA late co-stimulation was associated with a decrease of

lactate secretion (Figure S2F), indicating reduced glycolytic activity. Moreover, PA suppressed lactate

production during the late PRR activation (Figure 1C and S2G). Notably,  PA presence did not affect

extracellular  acidification rate (ECAR),  a surrogate measurement of  glycolytic  activity,  and  oxygen

consumption  rate  (OCR),  a  measurement  of  oxidative  phosphorylation  (OXPHOS),  during  the

immediate response to IMQ activation (Figure S2H-I). These results indicate that PA supresses late,

but does not interfere with early steps of glycolytic reprogramming.

Next, we speculated that GM-DC become sensitive to metabolic effects of PA once the cells acquire

“Warburg-like”  metabolism  (O’Neill  and  Pearce,  2016).  Indeed,  GM-DC  demonstrated  a  highly

glycolytic  phenotype  with  inhibited  mitochondrial  respiration  after  IMQ  activation  (Figure  1F-I).

Interestingly, while PA rapidly increased mitochondrial respiration in resting and IMQ-activated GM-DC

(Figure  1F-G),  only  IMQ-activated  “Warburg-like”  cells  displayed  decreased  glycolytic  activity  in

response to PA (Figure 1H-I). Similarly, PA inhibited lactate secretion from TLR-activated “Warburg-

like”  BMDM  (Figure  S2J).  Together,  these  data  show  that  PA  alters  late  stages  of  glycolytic

reprogramming, resulting in a shift from aerobic glycolysis towards OXPHOS. This metabolic effect of

PA was not due to alterations in glucose uptake (Figure S2K) or mitochondrial content (Figure S2L),

nor was it explained by changes in activity of electron transport chain (ETC) complexes (Figure S2M).

Although IMQ activation in GM-DC increased ATP levels and decreased ATP/ADP ratio (indicating

elevated  energy  utilization),  PA presence  did  not  alter  these  parameters  in  IMQ-stimulated  cells

(Figure S2N).

PA inhibits hexokinase activity and increases IL-23 expression independently of FAO

Octanoic acid, a medium chain saturated FA, has been shown to inhibit key glycolytic enzymes in the

liver (Weber et al., 1966). We hypothesized that PA might also inhibit glycolytic enzymes during the
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late-stage TLR activation in GM-DC. Indeed, PA reversed the IMQ-induced increase of hexokinase

(HK) activity at 24 hr (Figure 1J). Furthermore, various FA were capable to inhibit lactate secretion

when added for 2 hr to GM-DC primed with IMQ for 24 hr (Figure S2O). Interestingly, 2-methyl-PA

failed to inhibit  lactate secretion in this setting, suggesting that an intact carboxylic acid moiety is

required for the PA-dependent regulation of HK activity. Finally, the PA-mediated inhibition of HK was

not due to its dissociation from mitochondrial outer membrane into the cytosol (Figure S2P).

We next assessed whether PA activation to PA-CoA was required for the inhibition of glycolytic activity.

As the effect of PA on glycolysis was not modulated by triacsin C, an inhibitor of long-chain-FA-CoA

ligases  (Figure  S2O and Q),  its  conversion  to  PA-CoA by  these  enzymes  appears  dispensable.

Mitochondrial FAO depends on the activity of FA importers CPT1A and CPT2 (Mehta et al., 2017).

Cpt1a-deficiency or silencing both  Cpt1a  and  Cpt2 did not alter the PA-mediated increase in IL-23

expression  (Figure  S3A-B  and  D-F).  Moreover,  Cpt1a deficiency  did  not  affect  the  PA-mediated

inhibition  of  HK activity  in  IMQ-activated GM-DC (Figure  S3C).  In  addition,  using  a  FAO-specific

concentration  of  CPT1 inhibitor  etomoxir  (Divakaruni  et  al.,  2018)  did  not  alter  IL-23  expression

(Figure S3F). Furthermore, activation with IMQ decreased  Cpt1a expression and reduced complete

PA oxidation  to  CO2 in  GM-DC,  despite  a  modest  increase  of  acid-soluble  metabolite  (ASM)

production,  which  was  not  rescued  by  pre-incubation  with  PA (Figure  S3G-H),  indicating  greatly

reduced PA catabolism. In line, IMQ activation led to elevated accumulation of free non-metabolized

PA in GM-DC (Figure S3I). These results indicate that elevated intracellular FA concentrations, rather

than their metabolization via FAO, are critical for the inhibition of HK activity and ensuing increase in

IL-23 production at the late stage of TLR activation. 

PA inhibits glycolytic fluxes and disturbs mitochondrial fitness

We next investigated whether the FAO-independent inhibition of glycolysis by PA was associated with

alterations in the glycolytic pathway. IMQ-mediated DC activation induced the expression of genes

encoding glycolytic enzymes and lactate transporters (Figure S4A and P left). Interestingly, PA addition

to IMQ repressed Ldha, Pfkl, and Pfkfb3 expression compared to IMQ alone (Figure S4A and P right).

In  line  with  gene  expression  data,  [1,2-13C]glucose  flux  via  glycolysis  into  lactate  (M+2)  was

significantly reduced upon PA treatment in IMQ activated GM-DC, whereas the (M+1) flux via the

oxidative  pentose  phosphate  pathway  (PPP)  was  not  altered  (Figure  1K).  Analysis  of  glycolysis

intermediates showed non-significant increases of total fructose-1,6-biphosphate, 3-phosphoglycerate

and pyruvate upon IMQ stimulation (Figure S4C-F). However, GM-DC co-stimulated with IMQ and PA

displayed significantly decreased 3-phosphoglycerate compared to IMQ alone, in line with reduced

glycolytic activity (Figure S4E and P).
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IMQ activation generally down-regulated genes in the TCA cycle compared to resting cells (Figure

S4G and P). These transcriptional changes led to accumulation of itaconate, and to elevated fumarate

and malate levels, but no changes in citrate, isocitrate, and succinate were found in IMQ-activated

GM-DC (Figure S4G-M and P). By contrast, IMQ and PA stimulation increased expression of pyruvate

dehydrogenase (Pdhb), malate dehydrogenase (Mdh1/2) and mitochondrial isocitrate dehydrogenase

2 (Idh2) but decreased lactate dehydrogenase (Ldha) expression compared to IMQ-activation (Figure

S4A,  G  &  P).  Surprisingly,  in  this  setting,  [1,2-13C]glucose  fluxes  into  TCA metabolites,  such  as

isocitrate, itaconate, and malate, were significantly inhibited by PA (Figure 1L), and intracellular citrate

and itaconate levels  were reduced (Figure S4H and J). Itaconate regulates the late inflammatory

response in macrophages (Bambouskova et al., 2018). Because PA decreased itaconate levels, we

treated Acod1−/−  (also known as Irg1−/−) GM-DC, deficient in itaconate synthase, with IMQ and PA.

While  Irg1-deficiency  affected  IMQ+PA-induced  IL-23  expression,  the  effect  was  relatively  small

(Figure S4Q). Thus, the up-regulation of IL-23 by PA is unlikely due to the modulation of intracellular

itaconate.

Inhibited HK activity can lead to uncoupling of intra- from extramitochondrial metabolism (Robey and

Hay,  2006),  which might  result  in  mitochondrial  stress.  Indicative  of  mitochondrial  stress,  mtROS

generation  was  significantly  increased  by  PA in  IMQ-activated  GM-DC  (Figure  1M).  Moreover,

inhibition of HK activity by 2DG phenocopied the PA-induced increase of mtROS generation (Figure

1N). Taken together, these results indicate that the metabolic adaptation of glycolysis/ to a high FA

environment is associated with inhibition of glycolysis, reduced glycolytic flux into the TCA cycle, and

elevated mitochondrial stress.

PA increases IL-23 expression through elevated generation of mtROS by complex I

As PA elevated mitochondrial stress and increased IL-23 expression, we investigated whether these

events are functionally associated by inhibiting of mtROS generation. Both mitoTEMPO, an mtROS

scavenger, and rotenone, an inhibitor of ETC complex I, diminished mtROS generation and blunted

the PA-dependent  increase in  IL-23 expression (Figure 2A-C).  These results suggest  that  mtROS

generation by complex I  or  III  activity  links FA to IL-23 expression. Notably,  although it  generally

diminished  mitochondrial  respiration,  mitoTEMPO  neither  prevented  the  PA-mediated  inhibition  of

glycolytic and HK activities in IMQ-activated GM-DC nor altered GAPDH activity (Figure S5A-E). Thus,

the increased mtROS generation is rather the result of inhibited glycolytic activity, not the cause.

ROS generation has been shown to rapidly up-regulate oxidative PPP activity in keratinocytes leading

to increasing NADPH production to insure stabilization of redox balance and ROS clearance (Kuehne

et  al.,  2015).  We investigated whether  alterations  in  PPP might  functionally  link  the PA-mediated
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glycolysis inhibition with increased mtROS production. PA inhibited activity of G6PDH, a rate limiting

enzyme of the oxidative PPP, and treatment with mitoTEMPO diminished this effect (Figure S5F). In

addition, the product of the oxidative PPP, ribose-5-phosphate (R5P), was decreased (Figure S5G),

and [1,2-13C]glucose fluxes into R5P via non-oxidative PPP (M+2), but not oxidative PPP (M+1), were

decreased by PA in IMQ-activated GM-DC (Figure S5H). Interestingly, PA treatment also affected the

PPP metabolite sedoheptulose-7-phosphate (S7P) (Figure S5I-J). Altogether, these data show that

extracellular FA establishes a new metabolic equilibrium involving a modulation of the PPP activity,

redox balance and mtROS generation in TLR-activated DC.

Increased mitochondrial activity potentiates IL-23 expression

To demonstrate the relevance of these results in vivo, we used a mouse model of IMQ-induced skin

inflammation  (Fits  et  al.,  2009),  which  shares  some  features  with  human  psoriasis,  an  IL-23-

dependent  disease (Teng et  al.,  2015).  IMQ treatment  and high-fat  diet  (HFD)  feeding increased

concentrations of non-esterified FA (NEFA) in plasma (Figure S6A-B) in agreement with published

results (Stelzner et al., 2016). As reported (Kanemaru et al., 2015), HFD feeding increased epidermal

thickening (Figure S6C-D). Moreover, in IMQ-treated mice, HFD feeding increased the population of

IL-23+ conventional DC (cDC) in skin draining inguinal lymph nodes (iLN) (Figure 2D). Upon HFD

feeding, IMQ-activated cDC exhibited increased expression of genes involved in OXPHOS (Figure

S6E) and generated more mtROS (Figure S6F), similar to the in vitro findings (Figure 1M). Notably,

HFD feeding enhanced the IL-23-induced expression of a subset of  IMQ-responsive genes in skin

(Suárez-Fariñas et al., 2013), while it did not exert such an effect in the absence of IMQ (Figure S6G),

suggesting  that  increased  IL-23  production  links  HFD  feeding  with  exacerbated  skin  pathology.

Indeed, IMQ-induced skin inflammation was abrogated upon treatment with an IL-23-blocking antibody

(Figure S6H). Moreover, in HFD fed mice treated with IMQ, Cpt1a-deficiency in cDC did not alter IL-23

expression and skin pathology (Figure S6I-K), in agreement with  in vitro data (Figure S3B). Taken

together, these results indicate that IMQ-activated cDC respond to a high FA environment in vivo via a

FAO-independent mechanism by increasing mtROS generation and IL-23 expression. Next, we tested

whether inhibition of ETC complex I activity could mitigate the effects of HFD feeding on increased IL-

23 production  in vivo.  Metformin, a complex I inhibitor active in macrophages (Kelly et al.,  2015),

significantly reduced mitochondrial respiration in IMQ-activated GM-DC in the presence of PA (Figure

S6L)  and  decreased  IL-23  expression  induced  by  IMQ  and  PA (Figure  2E)  through  an  AMPK-

independent mechanism (Figure S6M). In HFD-fed mice, metformin significantly reduced IL-23+ cDC

numbers in iLN and epidermal thickness induced by epicutaneous application of IMQ (Figure 2F) and

mitigated  psoriasis-associated  gene  expression  in  the  skin  (Figure  S6N).  Thus,  in  vivo  IL-23
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production by cDC is enhanced by HFD-derived NEFA through a mechanism dependent on complex I

activity.

PA-mediated  increase  of  IL-23  expression  is  associated  with  a  decrease  in  the

glutamate/glutathione axis

We noticed, that the level of NADPH, a product of oxidative PPP, was decreased (Figure 2G) and

NADP+/NADPH ratio was increased by PA in IMQ-activated cells (Figure S5L). Decreased NADPH

might  thus explain the elevated mtROS generation  in  response to PA.  Interestingly,  mitoparaquat

(mitoPQ), which increase mtROS generation, up-regulated IL-23 expression in non-activated GM-DC

but failed to potentiate IL-23 expression in IMQ-activated cells (Figure 2H). Glutathione (GSH) is an

important component of the cellular anti-oxidant system (Mailloux et al., 2013). IMQ treatment resulted

in a robust increase of GSH levels during the late TLR7/8 response, but this effect was reversed in the

presence of PA (Figure 2I). Metabolomic data analysis revealed a decrease of intracellular glutamine

and glutamate levels in IMQ-activated GM-DC treated with PA (Figure 2J), which was associated with

inhibited flux into glutamate from glycolysis but not from glutaminolysis (Figure 2K). As glutamate is a

key component for GSH synthesis, reduced glutamate may also account for the decreased levels of

GSH, and thereby elevated mtROS generation, in GM-DC treated with IMQ and PA. 

To test whether glutamine plays a role in the regulation of IL-23, we deprived GM-DC from glutamine

before activation with IMQ and found significantly increased IL-23 expression (Figure 2L). Similarly,

silencing of Gls and Gls2 (Figure 2M), genes encoding enzymes mediating glutaminolysis, decreased

glutamate and GSH levels (Figure 2N-O) and also increased mtROS generation and IL-23 expression

in IMQ-activated GM-DC (Figure 2P-R). These results show that the pro-inflammatory effect of PA

depends, at least in part, upon the reprogramming of the glutamine/glutamate/GSH axis. 

Upper glycolysis inhibition promotes IL-23 expression

Because PA inhibited HK activity, we determined whether glycolytic inhibition was sufficient per se to

enhance IL-23 expression. Treatment with 2DG led to elevated IL-23 expression in GM-DC in synergy

with IMQ activation (Figure 3A). In line, intraperitoneal injection of 2DG significantly increased the

accumulation of IL-23+ cDC in IMQ-treated mice (Figure 3B). Taken together, these results show that

inhibition of HK activity promotes IL-23 expression in TLR7/8-activated DC  in vitro and  in vivo. PA

inhibited  aerobic  glycolysis  in  part  through  transcriptional  regulation  with  a  pronounced  effect  on

Pfkfb3 gene (Figure  S4A). PFKFB3 increases glycolysis in macrophages (Jiang et al., 2016). Upon

activation by IMQ and PA IL-23 expression was significantly increased in Pfkfb3-knocked-down GM-

DC  (Figure  3C).  We  next  evaluated  whether  lower  glycolysis  was  critical  for  IL-23  expression.
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Combined inactivation of Pfkl (liver-type phosphofructokinase 1) and Pfkp (6-phosphofructo-1-kinase)

decreased lactate secretion in IMQ-activated DC (Figure S7). However, this inactivation failed to up-

regulate IL-23 expression (Figure S6O), indicating that the activity of upper, but not lower, glycolysis is

essential for the regulation of IL-23 expression.

We  further  confirmed  the  role  of  upper  glycolysis  on  IL-23  regulation  using  a  model  of  genetic

inactivation of HIF1, which controls glycolytic activity in myeloid cells (Corcoran and O’Neill, 2016).

Accordingly, lactate secretion and HK activity were significantly decreased in IMQ-activated HIF1-

deficient GM-DC  (Figure  3D-F), while mtROS generation was significantly elevated (Figure 3G). In

line, IMQ-activated, but not resting, HIF1-deficient GM-DC displayed increased IL-23 expression and

secretion (Figure 3H). Similar results were observed in HIF1-deficient GM-DC from Hif1aVav/Vav mice

and tamoxifen-treated Hif1afl/flRosa26CreER mice  (data  not  shown).  Finally,  the  increase  of  IL-23

expression in IMQ-activated HIF1-deficient GM-DC was abrogated by inhibiting mtROS generation,

but not pyruvate dehydrogenase kinase (PDK) activity (Figure 3I). Taken together, these results show

that chemical or genetic inhibitions of upper glycolysis lead to increased mtROS generation and IL-23

expression.

Metabolic adaptation to a high FA environment is associated with a distinct transcriptional

program

To get further insight into the mechanisms of metabolic adaptation of DC to a high FA environment, we

performed microarray analysis of GM-DC activated by IMQ and PA. IMQ alone induced pronounced

changes in the DC transcriptional program, whereas PA alone only modestly affected gene expression

(Figure 4A).  By contrast,  combined PA and IMQ treatment resulted in robust  alteration of the DC

transcriptional program, significantly modulating the expression of 874 genes (594 up-regulated and

280 down-regulated) compared to GM-DC treated with IMQ alone (Figure 4A-B). Analysis of the 594

up-regulated  genes  revealed  an  enrichment  in  the  UPR,  IRE1/XBP1  pathway,  and  N-linked

glycosylation (Figure 4C), including up-regulated expression of multiple genes from the UPR and the

integrated stress response pathways (Figure 4D).  Similarly, transcriptomic analysis of cDC isolated

from IMQ-treated mice showed that, compared to CD, HFD feeding led to an increase in the UPR

gene signature (Figure 4E). Taken together, these results suggest that metabolic adaptation of IMQ-

activated DC to a high FA environment induces a distinct  transcriptional  program associated with

exacerbated UPR. 

PA potentiates the UPR in TLR-activated DC

The UPR regulates immune homeostasis and responses in DC (Martinon et al., 2010; Osorio et al.,
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2014;  Tavernier  et  al.,  2017).  Thus,  we further  analyzed the impact  of  UPR alterations  on  IL-23

expression. While PA alone acted on a very restricted gene subset, compared to IMQ alone, PA and

IMQ differentially altered the expression of genes involved in the UPR (Figure S7A). In particular,

combined action of IMQ and PA resulted in an additional increase of protein and/or gene expression of

Hspa5 (encoding BIP),  Ddit3 (encoding CHOP), and the spliced form of Xbp1 (XBP1s), but not the

cleaved form of ATF6 p50 (Figure 5A-B and S7B). Likewise, in sorted cDC, key UPR genes were

differentially expressed in response to HFD feeding (Figure S7C). Notably, this was not associated

with elevated expression of the UPR receptors PERK or IRE1 (Figure 5A and S7B). In line with these

data, the accumulation of XBP1s protein was maximal after 24 hr of combined treatment with IMQ and

PA (Figure S7D-E). Furthermore, PA potentiated UPR activation by TLR2, 3, and 4 in GM-DC (Figure

5B), indicating that this effect is not limited to TLR7/8 pathway. These results thus show that the late

metabolic adaptation of TLR-activated DC to a high FA environment results in a synergistic induction

of the UPR.

PA-induced metabolic adaptations hyperactivate the UPR 

Next,  we  determined  whether  metabolic  adaptations  to  PA directly  potentiate  TLR-mediated  UPR

activation. In GM-DC treated with IMQ and PA, complex I and mtROS inhibition decreased CHOP and

XBP1s  expression  (Figure  5C-H).  Furthermore,  inhibition  of  glycolysis  in  IMQ-activated  GM-DC

resulted in an increase of  Ddit3 and  Xbp1s expression (Figure 5I-J). Accordingly,  Ddit3 and  Xbp1s

expression were significantly increased in HIF1-deficient GM-DC that failed to increase glycolytic

activity  upon  TLR-activation  (Figure  5K-L).  Importantly,  Xbp1-deficiency  neither  affected  glycolytic

activity, nor altered mitochondrial respiration in IMQ-activated GM-DC (Figure S7F), indicating that the

increased UPR is a consequence rather than a cause of the inhibited glycolytic activity driven by PA.

Taken together,  these  results  indicate  that  metabolic  adaptations  to  PA control  the  UPR in  TLR-

activated DC.

UPR increases IL-23 expression through the PERK/CHOP and IRE1/XBP1 pathways

Tunicamycin, a direct activator of the UPR, significantly increased IL-23 expression in resting GM-DC

(Figure  6A).  Interestingly,  it  synergistically  enhanced  IL-23  expression  in  IMQ-activated  GM-DC

(Figure 6A-B). Specific inhibitors of IRE1-dependent splicing activity and PERK signaling resulted in

a significant and additive decrease of IL-23 expression in GM-DC treated with IMQ and PA (Figure 6C-

D). Because these inhibitors also significantly decreased Xbp1s, Atf4, and Ddit3 expression (data not

shown), downstream IRE1 and PERK targets, we evaluated the impact of these transcription factors

on IL-23 expression. Atf4 silencing decreased IL-23 expression in GM-DC activated with IMQ and PA,
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but not IMQ alone (Figure S7G). Likewise,  CHOP-deficient Ddit3−/−  GM-DC (Oyadomari et al., 2001)

displayed a lower IL-23 expression compared to Ddit3+/+ cells (Figure 6E-F). IL-23 expression was also

decreased in XBP1-deficient Xbp1CD11c/CD11c  GM-DC (Osorio et al.,  2014;  Cubillos-Ruiz et al.,  2015;

Tavernier et al., 2017) upon IMQ and PA activation (Figure 6G-H). Moreover, Ddit3−/−Xbp1CD11c/CD11c GM-

DC (Tavernier  et  al.,  2017),  deficient  for  both  XBP1 and  CHOP (Figure  S7H),  showed a  further

decrease in IL-23 expression (Figure 6G-H). Of note, in IMQ-activated GM-DC,  Il6 induction by PA

was dependent on mtROS generation, and XBP1- and CHOP-deficiency significantly attenuated  Il6

expression (Figure S7I-J).  Furthermore,  in  IMQ-activated GM-DC,  single  or  combined XBP1- and

CHOP-deficiency diminished IL-23 expression potentiated upon glycolysis inhibition by 2DG (Figure

6I-J).  GM-DC activation by IMQ and PA lead to increased mitochondrial  UPR (UPRmt)  (Wu et al.,

2014), and diminished mitochondrial localization of ATF5, a master regulator of the UPRmt in mammals

(Shpilka and Haynes, 2018) (Figure S7K-L). However, Atf5 knock-down did not alter IL-23 expression

in GM-DC (Figure S7M). Moreover, silencing  Atf3, a transcription factor that controls the integrated

stress response (Jiang et al., 2004), increased IL-23 expression in GM-DC activated with IMQ and PA

(Figure S7N). 

Finally,  ChIP-qPCR analysis  revealed  that  CHOP and  XBP1  interact  with  the  mouse  Il23a gene

promoter  in  GM-DC  and  their  binding  increased  by  treatment  with  IMQ  and/or  PA (Figure  6K).

Together, these results indicate that the endoplasmic reticulum UPR (UPRER), rather than UPRmt or the

ATF3-dependent pathway, links metabolic adaptation to elevated extracellular FA concentrations to IL-

23 expression in DC.

HFD-feeding  exacerbates  IMQ-mediated  inflammation  through  DC-specific  XBP1-dependent

regulation of IL-23

To assess the contribution of the UPR to exacerbation of inflammatory response by HFD feeding, we

evaluated IMQ-induced skin inflammation in mice harboring DC-specific XBP1-deficiency (Osorio et

al., 2014). Whereas the number and proportion of IL-23+ and IL-6+ cDC were not significantly lower in

CD-fed Xbp1CD11c/CD11c mice compared to their  Xbp1fl/fl littermates,  XBP1-deficiency in  cDC strongly

prevented the increase in  IL-23+ and IL-6+ cDC in response to HFD feeding in  IMQ-treated mice

(Figure 7A-D). Importantly, Xbp1CD11c/CD11c mice displayed ameliorated IMQ-induced psoriasis-like skin

inflammationbut showed no obvious difference in skin morphology without IMQ treatment (Figure 7E-

F).  These  results  show  that  UPR  activation  in  DC  contributes  to  TLR-mediated  IL-23-driven

inflammation enhanced by a high FA environment.

Discussion
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Here, we demonstrate that the UPR integrates the signal driven by metabolic adaptation of activated

DC  to  a  high  FA environment  into  a  specific  inflammatory  program,  characterized  by  elevated

expression of IL-23. Upon pathogen-mediated activation via PRRs, innate immune cells must meet the

high energetic demand required for anti-infectious defenses while ensuring moderate ROS levels to

preserve the host from cell damage. Hence, a trade-off exists between highly effective ATP synthesis

by  OXPHOS and  excessive  mtROS production.  Here,  we  demonstrate  that,  in  DC,  glycolysis  is

sensitive to a high FA environment at the late stage of PRR activation. Mechanistically, this metabolic

adaptation to excessive FA exposure is due to the inhibition of  HK activity,  resulting in metabolic

stress, in a decrease of carbon fluxes from glycolysis into the TCA cycle and, ultimately, in decreased

mitochondrial fitness. In turn, it increases mtROS generation and drives a distinct immune response

associated  with  hyperactivation  of  the  UPR.  Increased  IL-23  and  IL-6  are  hallmarks  of  this

metabolically-driven inflammatory response, and their expression is controlled by XBP1 and CHOP. IL-

23 and IL-6 are known targets of NF-B signaling upon TLR activation (Matsusaka et al., 1993; Sheikh

et  al.,  2010).  However,  in  our  model,  regulation  of  IL-23  by  PA was not  due  to  elevated NF-B

signaling. We also excluded the involvement of the UPRmt and ATF3-dependent pathway in regulation

of IL-23 by PA. Similarly, a recently described JNK-dependent modulation of the early TLR response

by PA (Lancaster et al., 2018) did not explain the PA-dependent up-regulation of IL-23 expression. On

the other  hand,  we found that  the  glutamine/glutamate/glutathione axis  contributes,  in  addition  to

decreased NADPH levels, to elevated mtROS levels upon PA treatment and in turn to increased IL-23

expression. By contrast, our data show that itaconate is unlikely to be involved in the PA-mediated up-

regulation  of  IL-23  expression.  Further  studies  are  however  needed  to  better  understand  such

integrated reprogramming mechanisms.

Different types of TLR ligands, myeloid cell origins and the microenvironment, as well as duration of

activation, can lead to differential metabolic responses (Stienstra et al., 2017). LPS treatment rewires

glycolysis  and  TCA  cycle  metabolism  in  macrophages  (Jha  et  al.,  2015).  We  found  similar

transcriptional and metabolic alterations in DC activated by IMQ alone,  where accumulation of non-

metabolized  PA and  inhibited  FAO  suggest  that  FA are  likely  diverted  from  OXPHOS  to  avoid

activation of the ETC and generation of mtROS. It is also possible that triglyceride synthesis acts as a

transient  buffer  for  extracellular  FA.  However,  excessive  extracellular  FA likely  overwhelm  this

protective  mechanism  (Chitraju  et  al.,  2017),  inhibiting  HK  activity  and  resulting  in  a  metabolic

disequilibrium and up-regulation of IL-23 and IL-6.

FAO contributes to polarization of M2 macrophages (Huang et al., 2014) or tolerogenic DC (Malinarich

et al., 2015; Zhao et al., 2018), at least in the absence of an acute inflammatory stimulus. Importantly,

a recent study challenged the role of FAO in M2 macrophage polarization as widely used etomoxir
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concentrations show multiple FAO-independent metabolic effects that are absent in genetic models of

FAO deficiency (Divakaruni et al.,  2018). In line, we found that the PA-mediated increase of IL-23

expression is FAO independent and rather due to direct FA-mediated inhibition of the upper glycolysis

in DC. HK has been shown to be an innate immune receptor for bacterial peptidoglycan detection of

and  its  activity  controls  a  dialog  between  mitochondria  and  inflammasome  (Wolf  et  al.,  2016).

PFKFB3 has been recently described as an important glycolytic activator controlling antiviral immune

responses in macrophages (Jiang et al.,  2016). Our results suggest that HK and PFKFB3 link the

metabolic  adaptation  of  glycolysis  to  high extracellular  PA with  inflammatory responses,  including

increased  IL-23  expression.  Given  that  glycolysis  controls  a  specific  inflammatory  signature,

manipulating its activity is a potential therapeutic approach to control innate inflammation.

Various TLR ligands and ROS are known UPR inducers (Grootjans et al., 2016; Martinon et al., 2010)

and our data confirm these findings. Importantly, our results demonstrate a finely regulated cross-talk

between the  adaptation  of  glycolytic  activity  to  the  metabolic  environment  and  the UPR in  TLR-

activated DC. Elevated glycolytic activity and reduced mtROS generation in TLR-activated DC are

protective mechanisms that cells use to prevent excessive UPR activation upon inflammation. This

hypothesis  is  in  line  with  the observation  that  glucose utilization  prevents  UPR-induced neuronal

damage during TLR3-induced and viral inflammation (Wang et al., 2016). The UPR has been shown to

induce  certain  pro-inflammatory  cytokines,  such  as  IL-6,  via  NOD1/2  –  another  class  of  PRRs

(Keestra-Gounder et al.,  2016). Whether a similar cross-talk also plays a role in the integration of

environmental  metabolic  signals  with  PRRs,  other  than  TLRs  and  Dectin-2,  remains  to  be

investigated. 

Different branches of the UPR are involved in the homeostasis and the control of immune responses

in DC (Janssens et al., 2014; Osorio et al., 2014; Tavernier et al., 2017). XBP1 regulates transcription

of IL-6 and TNF in mouse macrophages (Martinon et al., 2010) and IL-23 production in human DC in

response to zymosan (Márquez et al., 2017), while CHOP increases IL-23 expression in human DC in

response to LPS and tunicamycin (Goodall  et  al.,  2010).  However,  whether  these effects  require

metabolic adaptations has not been investigated.

Our  results  show that  XBP1  and  the  UPR  are  potential  therapeutic  targets  for  IL-23-dependent

inflammatory  diseases.  Interestingly,  a  recent  study  identified  that  activation  of  XBP1s  by  lipid

peroxidation results in abnormal lipid accumulation in tumor-associated DC and inhibits their capacity

to support anti-tumor T lymphocytes (Cubillos-Ruiz et al.,  2015), suggesting that XBP1 provides a

strong link between metabolic and immune functions in DC. 

IL-23 is a cytokine associated to protective immunity against some pathogens (Aychek et al., 2015).

Moreover,  IL-23  plays  a  role  in  autoimmune  diseases  including  psoriasis,  psoriatic  arthritis,  and
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ankylosing  spondylitis  (Pfeifle  et  al.,  2017;  Teng  et  al.,  2015).  It  is  likely  that  the  mechanism of

metabolic adaptation reported here is relevant to psoriasis and other IL-23-dependent pathologies.

During acute inflammation, elevated FA produced by lipolysis in adipose tissue (Rittig et al., 2016) may

potentiate  IL-23  and  IL-6  production  by  DC,  thereby  promoting  inflammatory  effects  against

pathogens. The innate immune system may have evolved to utilize the UPR as a sensor of elevated

FA that tunes acute inflammatory responses of DC to the metabolic milieu. However, excessive FA in

obesity and upon feeding with a HFD may result in hyperactivation of the UPR in DC and chronically

increased production of IL-23 and IL-6.

In conclusion, our results demonstrate that adaptation of the glycolysis/mtROS  axis to a metabolic

environment  rich  in  FA  and  ensuing  hyperactivation  of  the  UPR  represents  a  new  regulatory

mechanism of the innate immune response.
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Figure Legends

Figure 1. PA rewires inflammatory response and metabolism in TLR-activated DC.

GM-DC were activated by TLR ligands during indicated time without (control) or with PA.

(A-C) Il23a expression (A), IL-23p19 secretion (B) and lactate secretion (C) at 24 hr.

(D-E) Lactate secretion and Il23a expression at indicated time after activation. 

(F-I) GM-DC activated during 24 hr, followed by extracellular flux analysis. Mitochondrial respiration

calculated  as  OCR  (F-G),  glycolysis  activity  calculated  as  ECAR (H-I),  before  and  after  PA

administration. Oligo, oligomycin; FCCP, carbonyl cyanide-4-(trifluoromethoxy)phenylhydrazone; AA,

antimycin A; Rot, rotenone; 2DG, 2-deoxyglucose. 

(J) HK activity in GM-DC treated as in D-E. 

(K-L) Fluxes from 1,2-13C-glucose into intracellular lactate (K), isocitric, itaconic, and malic acids (L). . 

(M-N) MitoSOX staining in GM-DC activated by IMQ with/without PA (M) or with/without 2DG (N).

n = 3-5 per group. Data are shown as mean ± SEM. *P < 0.05, **P < 0.01, ***P < 0.001 (unpaired

Student’s t  test or one-way ANOVA with Bonferroni test).  #P < 0.05 as compared to mock/control

treated cells (one-way ANOVA with Bonferroni test). See also Figure S1-5.

Figure 2. PA increases IL-23 through mitochondrial respiration and mtROS generation.

GM-DC were activated by IMQ without (Control) or with PA in the presence of indicated inhibitors for

24 hr.

(A-C)  MitoSOX  staining  (A),  Il23a expression  and  IL-23p19  secretion  (B-C)  in  the  presence  of

mitoTEMPO or rotenone.

(D) Male mice were fed CD or HFD, abdominal skin was treated with IMQ or vehicle during 6 days.

Proportion of IL-23+ cDC in iLN. n = 4-6 mice per group.

(E) Il23a expression in GM-DC in response to metformin.

(F) Male mice were fed HFD with or without metformin supplementation of drinking water during 3

days followed by IMQ application to belly skin. Number of IL-23+ cDC in iLN 18 hr after IMQ treatment

and average epidermal thickness after 5 days of IMQ treatment. n = 6-8 mice per group.

(G) NADP+ and NADPH levels in GM-DC activated by IMQ with/without PA for 2-24 hr.

(H) MitoSOX staining in GM-DC activated by IMQ with/without mitoParaquat (mitoPQ).

(I) Intracellular GSH in GM-DC treated as in Figure 1D.

(J) Intracellular glutamine and glutamate.

(K) Carbon fluxes from 1,2-13C-glucose and U-13C-glutamine into intracellular glutamate.

(L) Il23a expression in GM-DC pre-incubated with or without 2 mM glutamine for 4 hr and treated with
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IMQ for 24 hr.

(M-R)  Gls and Gls2 expression (M), intracellular glutamate (N) and GSH (O), mtROS levels (P) and

Il23a expression (R) in GM-DC transfected with siRNA against Gls and Gls2 or control siRNA and 48

hr later treated with IMQ in media containing glutamine for 24 hr.

n = 3-6 per group. Data are shown as mean ± SEM. *P < 0.05, **P < 0.01, ***P < 0.001 by unpaired

Student’s t test. See also Figure S4 and S6.

Figure 3. Upper glycolysis decreases IL-23 expression.

(A) Il23a expression and IL-23 protein secretion in GM-DC activated by IMQ and treated with 2DG.

(B) Number and proportion of IL-23+ cDC in iLN in mice 18 hr after IMQ application to abdominal skin

and intraperitoneal injection with PBS or 2DG. n = 4-8 mice per group.

(C) Pfkfb3 and Il23a expression in GM-DC transfected with siRNA against Pfkfb3 or control siRNA and

48 hr later treated with IMQ.

(D-J) Hif1afl/fl and Hif1aTie2/Tie2 GM-DC treated with IMQ. Lactate secretion (D), ECAR (E), hexokinase

activity (F), MitoSOX+ staining (G). 

(H-I) Il23a expression and IL-23 secretion in Hif1afl/fl,  Hif1aVav/Vav, and Hif1aTie2/Tie2 GM-DC treated with

IMQ in the presence of mitoTEMPO and DCA.

n = 3-5 per group. Data are shown as mean ± SEM. *P < 0.05, **P < 0.01, ***P < 0.001 (unpaired

Student’s t test or two-way ANOVA with Sidak post-hoc test). See also Figure S3-4.

Figure 4. PA and HFD feeding alter transcription program and induce the UPR in IMQ-activated

DC.

(A) Principal component (PC) analysis of 15000 genes with maximal average expression in GM-DC.

(B) Volcano plot of differential gene expression in GM-DC treated with IMQ versus treated with IMQ

plus PA; number of genes with fold-change > 1.5 and < 0.67 and adjusted P < 0.05 are shown.

(C) Gene set enrichment analysis (GSEA) of the 594 genes from B using the Reactome database.

(D) K-mean clustering of the 15000 genes.

(E) GSEA using the “Unfolded Protein Response (UPR)” pathway in cDC sorted from iLN from IMQ-

treated mice fed CD or HFD (15000 genes with maximal average expression).

n = 4 in each group. See also Figure S6.

Figure 5. PA enhances the UPR through mtROS generation and inhibition of glycolysis.

(A) Representative Western blot analysis of the UPR proteins in GM-DC treated with IMQ and PA.

TBP (TATA-binding protein) and -tubulin were used as loading controls. 
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(B)  Hspa5,  Ddit3,  and  Xbp1s expression in  GM-DC treated with various  TLR ligands without  PA

(Control) or with PA.

(C-D) Ddit3 expression (C) and CHOP analysis by Western blot (D) in GM-DC treated as in A in the

presence of rotenone. 

(E) Xbp1s expression in GM-DC treated as in C. 

(F) Representative flow cytometric analysis of XBP1s-venus+ GM-DC from ERAI mice treated as in C.

(G-J) Ddit3 and Xbp1s expression in GM-DC treated as in A in the presence of mitoTEMPO or 2DG.

(K-L) Ddit3 and Xbp1s expression in Hif1afl/fl and Hif1aVav/Vav GM-DC treated with IMQ.

n = 2-5 per group. Data are shown as mean ± SEM. *P < 0.05, **P < 0.01, ***P < 0.001 (unpaired

Student’s t  test or one-way ANOVA with Bonferroni test).  #P < 0.05 as compared to mock/control

treated cells (one-way ANOVA with Bonferroni test). See also Figure S7.

Figure 6. PA and 2DG increase IL-23 expression through CHOP and XBP1s

(A-B) Il23a expression (A) and IL-23p19 secretion (B) by GM-DC activated by IMQ and treated with

tunicamycin (TN).

(C-D)  Il23a expression (C)  and IL-23p19 secretion (D)  by GM-DC activated by  IMQ and PA and

treated with 4µ8C (IRE1 inhibitor) and/or GSK2606414 (PERK inhibitor).

(E-F) Il23a expression (E) and IL-23p19 secretion (F) by Ddit3+/+ and Ddit3−/− GM-DC activated by IMQ

and PA.

(G-J)  Il23a expression (G and  I)  and IL-23p19 secretion (H and  J) by Xbp1fl/fl,  Xbp1CD11c/CD11c,  and

Ddit3−/−Xbp1CD11c/CD11c GM-DC activated by IMQ and PA or 2DG.

(K) Schematic map of potential CHOP and XBP1 binding sites within the 5'-region of  Il23a mouse

gene and ChIP-qPCR analysis of XBP1 and CHOP binding to these sites in GM-DC treated as in (C-

D). Data are shown as % DNA input enrichment for each site. TSS – transcription start site.

n = 3-5 per group. Data are shown as mean ± SEM. *P < 0.05, **P < 0.01, ***P < 0.001 (unpaired

Student’s t test or one-way ANOVA with Bonferroni test). See also Figure S7.

Figure 7.  HFD feeding exacerbates psoriasis-like inflammation through the Xbp1-dependent

increase of IL-23 expression in cDC

Xbp1fl/fl and Xbp1CD11c/CD11c littermate male mice were untreated or daily treated by application of IMQ to

shaved abdominal skin during 5 days and fed CD or HFD. 

(A-D) Number and proportion of IL-23+ (A-B) and IL-6+ (C-D) cDC in iLN.

(E) Representative MGG staining of sections from abdominal skin. Scale bar 50 µm.

(F) Average epidermal thickness of abdominal skin.
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n = 6-8 mice per group (IMQ treated) and n = 2 mice per group (untreated). Data are shown as mean

± SEM. *P < 0.05, **P < 0.01, ***P < 0.001 (two-way ANOVA with Tukey's post-hoc test; significance of

genotype and diet effects or their interaction is shown). See also Figure S7.
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Supplementary Figures Legends

Figure  S1.  PA  alters  expression  of  cytokines  and  chemokines  in  PRR-activated  DC  and

macrophages. Related to Figure 1.

(A-B) Expression of Il6 and Il12a mRNAs in GM-DC activated by indicated TLR ligands during 24 hr in

fatty acid-free medium (Control) or in the presence of PA. n = 3 per group. (C) Expression of cytokine

and chemokine genes in GM-DC treated as in (A-B), analyzed by microarray. Data are shown as heat

map with relative expression values (z-score). (D) Expression of Il23a mRNA in GM-DC treated with

curdlan, furfurman, TNF or IL-1 in fatty acid-free medium (Control) or in the presence of PA for 24 hr.

n = 4 per group. (E) Expression of  Il23a mRNA in BMDC treated with IMQ or LPS in fatty acid-free

medium (Control) or in the presence of PA for 24 hr. n = 4 per group. Data are shown as mean ± SEM.

*P < 0.05, **P < 0.01, ***P < 0.001 (unpaired Student’s t test). 

Figure S2.  PA-mediated regulation of IL-23 expression in DC and macrophages. Related to

Figure 1.

(A)  IL-23p19 secretion by Tlr4+/+ and Tlr4−/− GM-DC activated by IMQ or LPS during 24 hr in the

presence of 0.5 mM PA. n = 3-4 per group. (B) Il23a mRNA expression in GM-DC activated with IMQ

and PA for 2 or 24 hr with/without NF-B inhibitory peptide SN50. n = 3 per group. (C) WB analysis of

JNK and p-JNK in GM-DC treated with IMQ and PA for 24 hr. n = 3 per group. (D) Mapk8, Mapk9, and

Il23a mRNA expression in GM-DC transfected with siRNA against Mapk8 and Mapk9 and 48 hr later

activated with IMQ and PA for 24 hr. n = 4 per group. (E) Il-23p19 secretion by GM-DC activated with

IMQ in the presence of PA or OA for 24 hr. n = 4 per group. (F)  Il23a mRNA expression, IL-23p19

secretion, (D) and lactate secretion by GM-DC activated by IMQ during 24 hr in fatty acid-free medium

(Control) or in the presence of indicated concentrations of PA. n = 3 per group. (G) Lactate secretion

from GM-DC treated as in Figure S1D. (H-I) Real time changes of ECAR (H) and OCR (I) measured

by the extracellular flux analyzer in GM-DC incubated in fatty acid-free medium in the presence on

glucose after administration of IMQ alone or IMQ plus PA. Time of injection of compounds during the

test is indicated by arrow. n = 4 per group. (J) Lactate secretion from BMDM treated as in Figure S1E.

(K-L)  GM-DC activated by IMQ in fatty  acid-free medium or  in  the presence of  PA during 24 hr.

Representative flow cytometric analysis of 2-NBDG uptake (K), mitochondrial content measured by

staining with Mitotracker Green (L). Data from one of three reproducible independent experiments are

shown.  (M)  Activity  of  electron  transport  chain  complexes in  permeabilized  cells  after  addition  of

indicated  substrates  and  inhibitors  measured  as  oxygen  consumptions  by  Oxygraph-2 k  high-

resolution respirometry in GM-DC activated by IMQ in fatty acid-free medium or in the presence of PA

and/or etomoxir during 24 hr. n = 4 per group. (N) Relative ATP production and ATP/ADP ratio in GM-
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DC activated by IMQ in fatty acid-free medium or in the presence of PA during 24 hr. n = 4 per group.

(O) Hexokinase activity in GM-DC treated with IMQ for 24 hr and after that incubated with 0.5 mM of

indicated FA for 2 hr. PA, palmitic acid (C16:0); 2Me-PA, 2-methylpalmitic acid (2Me-C16:0); OA, oleic

acid (C18:1); LA, linoleic acid (C18:2); OCTA, octanoic acid (C8:0). n = 4 per group. (P) WB analysis

of hexokinase 1 (HK1) protein in total cell lysates and isolated mitochondria and the cytosol from GM-

DC activated with IMQ and PA fro 24 hr. n = 3 per group. (Q) ECAR in GM-DC activated with IMQ with/

without triacsin C for 24 hr and injected with BSA or PA during the “Seahorse” assay. n = 4 per group.

Data are shown as mean ± SEM. *P < 0.05, **P < 0.01, ***P < 0.001 (unpaired Student’s t test or one-

way ANOVA). NS – not significant.

Figure S3. FAO-independent IL-23 expression in DC. Related to Figure 1.

(A-C) Cpt1a (A), Il-23a (B) mRNAs expression, and HK activity (C) in Cpt1afl/fl and Cpt1aItgax/Itgax GM-

DC activated with IMQ and PA for 24 hr. (D-F) Cpt1a (D), Cpt2 (E), and Il23a (F) mRNA expression

GM-DC transfected with control siRNA or siRNAs against Cpt1a and Cpt2, treated with or without 3

M etomoxir (Eto) and activated with IMQ and PA for 24 hr. (G) Cpt1a mRNA expression in BMDC

activated with IMQ and PA for indicated time. (H)  14CO2 production and accumulation of 14C in the

acid-soluble metabolite fraction from GM-DC treated with IMQ and PA for 20 hr and incubated with
14C-PA for consecutive 4 hr. (II) Relative abundance of intracellular PA measured by GC-MS in GM-DC

treated treated with or without IMQ for 20 hr and incubated with PA for consecutive 4 hr. n = 3-6 per

group. Data are shown as mean ± SEM. *P<0.05, **P<0.01, ***P<0.001 by t-test. 

Figure S4.  Interaction between IMQ and PA results in rewiring of glycolysis and TCA cycle

metabolism in DC. Related to Figures 1-3.

(A-O)  GM-DC activated by IMQ in fatty acid-free medium or in the presence of  PA during 24 hr.

Relative expression of genes controlling glycolysis (A) and TCA cycle metabolism (G) analyzed by

microarray. Relative abundance of metabolites implicated in glycolysis (B-F)  and TCA cycle (H-O)

measured by LC-MS and GC-MS. (P) Schematic diagrams of gene and metabolite alterations in GM-

DC activated  by  IMQ with/without  PA.  Up-regulated  genes/metabolites  are  shown as  red,  down-

regulated – blue. G6P, glucose 6-phosphate; F6P, fructose 6-phosphate; R5P, ribose 5-phosphate;

S7P,  sedoheptulose  7-phosphate;  F1,6BP,  fructose  1,6-bisphosphate;  G3P,  glyceraldehyde  3-

phosphate;  1,3BPG,  1,3-bisphosphoglyceric  acid;  3PG,  3-phosphoglyceric  acid;  2PG,  2-

phosphoglyceric acid; PEP, phosphoenolpyruvic acid. Results from n = 4-6 per group. (Q) Il23a mRNA

expression in Acod1+/+ and Acod1−/− GM-DC treated with IMQ and PA for 24 hr. n = 4 per group.

Data are shown as mean ± SEM. *P < 0.05, **P < 0.01, ***P < 0.001 (unpaired Student’s t test).
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Figure S5. Effects of PA to glycolysis and the PPP in DC. Related to Figure 3.

(A-B) ECAR (A) and OCR (B) in GM-DC activated by IMQ with/without mitoTEMPO for 24 hr and

injected with PA during the “Seahorse” assay. n = 4 per group. (C-F) Lactate secretion (C), HK activity

(D),  GAPDH  activity  (E),  G6PDH  activity  (F)  in  GM-DC  activate  by  IMQ  and  PA with/without

mitoTEMPO for 24 hr. n = 3-4 per group. (G-K) Relative level of ribose-5-phosphate (G), carbon flux

from 1,2-13C-glucose  into  ribose-5-phosphate  (H),  relative  level  of  sedoheptulose-7-phosphate  (I),

carbon flux from 1,2-13C-glucose into sedoheptulose-7-phosphate (J) and schematic representation of

the flux (I) in GM-DC treated with IMQ and PA for 24 hr. n = 3-6 per group. (L) NADP+/NADPH ratios in

GM-DC treated with IMQ and PA for indicated time. n = 4 per group. Data are shown as mean ± SEM.

*P < 0.05, **P < 0.01, ***P < 0.001 (unpaired Student’s t test or one-way ANOVA).

Figure S6. HFD feeding exacerbates psoriasis-like inflammation through accumulation of IL-23+

cDC in iLN and increased IL-23 signaling in the skin. Related to Figures 2 & 4.

(A-G) Male mice were treated daily by application of vehicle or IMQ to shaved abdominal skin during 5

days and fed CD or HFD. Schematic design of this experiment (A).  Concentration of non-esterified

fatty acids (NEFAs) in plasma after day 5 of treatment (B). Representative MGG staining of abdominal

skin sections (scale bar 50  m) (C). Average epidermal thickness of abdominal skin (D). GSEA of

genes  from KEGG OXPHOS pathway  in  cDC sorted  from iLN  and  analyzed  by  microarray  (E).

Proportion of mitoSOX+ cDC in iLN (F). Volcano plots with log2 fold change versus log10 P-value of all

transcripts  (GSE69750,  gray  dots),  including  1288  significantly  up-regulated  transcripts  after

intradermal injection of IL-23 (GSE50400, fold change (FC) > 2, q-value < 0.05) (red dots). Numbers

of  up-  and  down-regulated  among  the  1288  transcripts,  and  statistical  significance  levels  of  up-

regulation of this entire IL-23-dependent set of transcripts are shown (G). (H) Mice were treated daily

by application of IMQ to shaved abdominal skin during 5 days, injected IP with 3 mg anti-IL-23p19

neutralizing  antibody  or  control  IgG at  1st and 4th days,  and  fed CD or  HFD.  Average  epidermal

thickness in abdominal skin. Data are pooled from two independent experiments and shown as mean

± SEM. n = 4-12 mice per group. (I-K) Irradiated C57BL/6 mice reconstituted with bone marrow from

Cpt1a+/+ or Cpt1aZbtb46/Zbtb46 mice and fed 6 weeks post-irradiation with CD or HFD and epicutaneously

treated with vehicle- or IMQ-containing cream for 5 days. Macroscopic aspect of lesions and disease

activity score (I). MGG staining of lesions (J). Numbers and per cent IL-23+ cDC (K) in iLN. n = 2-8

mice per group. Data are shown as mean ± SEM or box plots with median ± first-third quartiles. (L-M)

GM-DC treated with IMQ and PA in the presence or absence of metformin during 24 hr.  Oxygen

consumption  rate  (OCR)  and  mitochondrial  respiration  (L),  Prkaa1,  Prkaa2,  and  Il23a mRNA
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expression and IL-23p19 protein secretion (M). (N) mRNA expression of indicated genes in the skin

from mice treated as in Figure 2D. n = 2-4 mice per group. (O) Pfkl, Pfkp, Il23a mRNA expression and

lactate secretion in GM-DC transfected with siRNA against Pfkl and Pfkp or control siRNA and 48 hr

later treated with IMQ and PA for 24 hr. n = 4 per group. Data are shown as mean ± SEM. *P < 0.05,

**P < 0.01, ***P < 0.001 (unpaired Student’s t test or two-way ANOVA with Tukey's post-hoc test). NS

– not significant.

Figure S7. PA increases the UPR in IMQ-activated DC. Related to Figures 5-7.

(A) Heat-map with relative expression of genes from GO:0030968 “Endoplasmic reticulum unfolded

protein  response”  analyzed  by  microarray  analysis  in  GM-DC activated  by  IMQ in  fatty  acid-free

medium or in the presence of PA during 24 hr. n = 4 per group. (B) Quantification of WB from Figure

5A. n = 5 per group. (C) Heat-map with relative expression of genes implicated in the UPR analyzed

by microarray analysis in cDC isolated from iLN from mice treated with IMQ and fed CD or HFD. n = 4

mice per  group.  (D-E)  GM-DC differentiated from the  ER stress  activated indicator  (ERAI)  mice.

Representative flow cytometric analysis (D) and proportion (E) of Xbp1s-venus+ GM-DC treated with

IMQ and PA during 24 hr. n = 2 per group. #P < 0.05 vs. control groups and *P < 0.05 vs. IMQ groups.

(F) Glycolytic and mitochondrial activities in Xbp1fl/fl and Xbp1CD11c/CD11c GM-DC activated with IMQ for

24 hr. n = 5 per group. (G) Atf4 and Il23a mRNA expression in GM-DC transfected with siRNA against

Atf4 or control siRNA and 48 hr later activated by IMQ and PA for 24 hr. n = 4 per group. (H) Xbp1fl/fl,

Xbp1CD11c/CD11c, and Ddit3−/−Xbp1CD11c/CD11c GM-DC activated by IMQ in fatty acid-free medium or in the

presence of PA during 24 hr. Deletion-specific qPCR forXbp1 and Ddit3 mRNA expression. n = 4 per

group.  (I)  Il6 mRNA expression in GM-DC activated by IMQ with or without PA during 24 hr in the

presence  of  rotenone  or  mitoTEMPO.  n  =  5  per  group.  (J)  Il6 mRNA expression  in  Xbp1fl/fl,

Xbp1CD11c/CD11c and Ddit3−/−Xbp1CD11c/CD11c GM-DC activated by IMQ with or without PA during 24 hr. n =

4 per group. (K) Expression of genes from the mitochondrial UPR transcriptional signature in GM-DC.

(L) WB analysis and quantification of ATF5 in isolated mitochondria from GM-DC. n = 2 per group. (M-

N) Il23a, Atf5, and Atf3 mRNA expression in GM-DC transfected with control siRNA or siRNAs against

Atf5 or Atf3 and 48 hr later activated by IMQ and PA for 24 hr. n = 4 per group. Data are shown as

mean ± SEM. ND – not detected.*P < 0.05, **P < 0.01, ***P < 0.001 (unpaired Student’s t test), #P <

0.05 vs. PA groups (unpaired Student’s t test).

Supplemental Table Legends

Supplemental Table S1. Sequences for primers used in RT–qPCR experiments. Related to Figures

1-3 & 5-6 and STAR Methods.
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Supplemental Table S2. Sequences for primers used in ChIP–qPCR experiments. Related to Figure

6 and STAR Methods.
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STAR METHODS

CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources and reagents should be directed to and will be fulfilled

by the Lead Contact, David Dombrowicz (david.dombrowicz@pasteur-lille.fr).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Mice

Wild-type male C57BL/6 mice (8 weeks of  age) were purchased from Charles River  Laboratories

(France). Tlr4−/− mice were a gift from Jean-Claude Sirard (Inserm U1019, Institut Pasteur de Lille,

France). Acod1−/− mice were a gift from Eik Hoffmann (CIIL, Institut Pasteur de Lille, France). Prkaa1+/−

and Prkaa1−/− mice  (Jørgensen et al.,  2004) were from Institut Cochin, Université Paris Descartes,

Paris, France. Hif1aVav/Vav  mice (Vukovic et al., 2016) and Hif1aTie2/Tie2  mice were from MRC Centre for

Regenerative  Medicine,  University  of  Edinburgh,  UK.  Hif1afl/flRosa26CreER  mice  were  from

Department of Molecular Medicine and Gene Therapy, Lund Stem Cell Center, Sweden. Ddit3−/− mice

(Oyadomari et  al.,  2001) were from Division of Molecular Biology, Institute for Genome Research,

Tokushima University, Japan. Xbp1CD11c/CD11c mice (Cubillos-Ruiz et al., 2015; Osorio et al., 2014) were

from VIB Center for  Inflammation,  Gent University,  Belgium or Department of  Medicine, and Weill

Cornell Medical College, New York, USA. Ddit3−/−Xbp1CD11c/CD11c mice (Tavernier et al., 2017) and ERAI

Xbp1-venus  reporter  mice  (Iwawaki  et  al.,  2004)  were  from  VIB  Center  for  Inflammation,  Gent

University,  Belgium.  Cpt1aCD11c/CD11c mice  (Divakaruni  et  al.,  2018) were  from Institute  of  Infection

Immunology, Hannover, Germany. Cpt1aZbtb46/Zbtb46 mice were from William Harvey Research Institute,

London, UK. Mice were maintained in pathogen-free environment (12:12 hr light/dark cycle, 21°C-

24°C) at the Institut Pasteur de Lille. 8-12-week-old male mice were used for all experiments with ad

libitum access to water and food. During the experiments, food and bedding was changed daily to

prevent any accumulation of food in the cages. Mice were randomized into the different treatment and

diet groups equilibrated for body weight and age. Mice were fed a control diet (CD, standard rodent

chow, 5% kcal fat) or high fat diet (HFD, 60% kcal fat) for the indicated period of time. Mice with fight

wounds at the skin were excluded from analyses. All experiments were performed following approval

by the Ethics Committee for Animal Experimentation from Nord-Pas de Calais Region (CEEA75-n°01-

2002R and APAFIS#7160-2017040313471173).

Cell culture

Bone marrow-derived dendritic cells differentiated in the presence of GM-CSF (GM-DC) were obtained
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from femurs of WT, Tlr4−/−, Prkaa1+/−, Prkaa1−/−, Hif1aTie2/Tie2 , Hif1aVav/Vav, Ddit3−/−, Xbp1CD11c/CD11c, Ddit3−/

−Xbp1CD11c/CD11c,  Cpt1aCD11c/CD11c, and  ERAI  Xbp1-venus  reporter  mice (C57BL/6  background,  8-12

weeks  of  age),  cultured  in  DMEM  media  containing  10%  fetal  calf  serum  (FCS),  10  µM  2-

mercaptoethanol,  25  mM  HEPES,  10  µg/ml  gentamycin  and  20  ng/ml  GM-CSF.  Medium  was

refreshed every 3 days. GM-DC were used for experiments on day 14 th of culture (mature GM-DC

expressed CD11c+MHCII+ in > 80-90% cells). Bone marrow-derived macrophages differentiated in the

presence of M-CSF (BMDM) were obtained from femurs of WT mice (C57BL/6 background, 8 weeks

of age), cultured in RPMI media containing 10% FCS, 10 µM 2-mercaptoethanol, 10 µg/ml gentamycin

and 20 ng/ml M-CSF and used at day 6. Cell viability was tested by 7AAD or trypan blue assays and

was between 70-90% of live cells depending on type of treatment.

METHOD DETAILS

IMQ-induced psoriasis-like skin inflammation

IMQ-induced psoriasis-like inflammation was induced as previously described (Fits et al., 2009). Mice

were treated with a daily topical dose (62.5mg) of IMQ cream (Aldara 5%) or control “Lanette” cream,

unless stated otherwise, on the shaved abdominal skin for 5 days and sacrificed 24 hr later. Mice were

fed HFD or control chow diet for the treatment duration. In some experiments, mice were treated by

metformin in drinking water (0.5g/l) (Lien et al., 2014), starting at 3 days before and during treatment

with IMQ. At the time of sacrifice, skin samples were directly frozen in liquid N 2 for RNA isolation or

fixed in Immunohistofix for histological analysis.

For bone marrow chimeras, 8 – 10 week old C57BL/6 male mice were gamma-irradiated twice with 5

Gy 3 hr apart. Mice were reconstituted 3 hr later by intravenous (i.v.) injection with marrow cells (3 106

cells) harvested from the femurs and tibias of Cpt1aZbtb46/Zbtb46 mice and control Cpt1+/+ WT littermates.

Mice were maintained on acidified water containing Baytril (Enrofloxacin) during the critical 3-week

reconstitution period. Six weeks after reconstitution, animals were fed a HFD or CD and psoriasis-like

inflammation was induced by IMQ application as described.

Isolation of cells from iLN

Mouse iLN were mechanically homogenized, passed through 70 m filter and centrifugated at 400 g

for  10 min.  Cell  pellets  were washed two times with  cold  PBS and used for  cell  sorting  or  flow

cytometry. For IL-23p19 staining, cells were incubated in DMEM containing brefeldin A (1µg/ml) at

+37°C, 5% CO2 for 4 hr.

Flow cytometry
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Cells were stained with Zombie UV viability reagent during 15 min at +20°C, washed two times with

cold PBS + 0.5% BSA, incubated with Fc block and antibodies mentioned in the figure legends and

the Key Resources Table in PBS + 0.5% BSA during 30 min at +4°C, washed two times with cold PBS

+ 0.5% BSA, fixed with 1% PFA and used for flow cytometry. Flow cytometry analyses were performed

on BD LSRFortessa X-20 flow cytometer. Results were acquired with the Diva software and analyzed

using FlowJo software. cDC were defined as CD3−CD19−CD64−Ly6G−CD11c+MHCII+ cells.

Sorting of cDCs from iLN

CD3−CD19−CD64−Ly6G−CD11c+MHCII+ DCs were sorted from mouse iLN using BD Influx Cell Sorter

(BD Biosciences). 5-8 × 105 sorted cDC were used for RNA isolation with Arcturus Picopure RNA

isolation Kit. 

Activation of GM-DC 

GM-DC (5 × 105  per ml) were incubated in DMEM containing 10% FCS,  2 mM L-glutamine, 4.5 g/L

glucose, and 10 µg/ml gentamycin and treated with 100 ng/ml Pam3CSK4, 10 µg/ml Poly(I:C), 100 ng/

ml LPS, and 3µg/ml Imiquimod,100 g/ml curdlan, 1 g/ml furfurman, 50 ng/ml TNF, 50 ng/ml IL-1

with or without PA or other FA conjugated with BSA (0.065-0.5mM, molar ratio PA:BSA 6:1, OA:BSA

6:1) in the presence of 3 µM etomoxir, 5 mM 2-deoxyglucose, 1 µM rotenone, 5 mM metformin, 0.5

mM MitoTEMPO,  10 µM 4μ8C,  2  µM GSK2606414,  1  µM tunicamycin,  100 µg/ml  SN50,  5  mM

dichloroacetate (DCA), 10 µM triacsin C, 10 µM or 20 µM MitoPQ  as indicated in figure legends.

Reagents  were  added  to  cells  simultaneously  with  IMQ or  LPS,  unless  stated  otherwise.  SN50,

MitoTEMPO,  GSK2606414,  4μ8C,  etomoxir,  triacsin  C  and  DCA were  added  1  hr  before  other

reagents. GM-DC were activated during 24 hr unless otherwise indicated.

siRNA transfection

5 × 105  GM-DC per  biological  replicate  were  transfected with  siRNA using  Mouse  Dendritic  Cell

Nucleofector Kit and Nucleofector II/2b device according to manufacturer's instructions. Cells were

incubated during 48 hr in DMEM + 10% FCS and treated with IMQ and PA as described in TLR

activation of GM-DC. Used siRNAs are mentioned in the figure legends and the Key Resources Table.

2-NBDG uptake

5 × 105 GM-DC per biological replicate were incubated in DMEM without glucose during 1 hr following

by incubation in the presence of 0.1 mM 2-NBDG during 10 min, washed two times with PBS and

analyzed by flow cytometry.
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Analysis of mitochondrial content

5 × 105 GM-DC per biological replicate were incubated in DMEM in the presence of 1 µM MitoTracker

Green FM during 15 min, washed two times with PBS and analyzed by flow cytometry.

Mitochondrial ROS production

To detect mitochondrial ROS, 5 × 105  GM-DC or cells isolated from iLN per biological replicate were

incubated with 5 µM MitoSOX Red mitochondrial superoxide indicator at 37°C for 20 min in DMEM,

washed two times with PBS, stained with surface antibody if indicated, and then analyzed with flow

cytometry.

Mitochondrial respiration assay

4 × 106  GM-DC per biological replicate were placed into the O2K chambers (Oroboros Instruments)

and filled with MiR05 as described on the Oroboros website (http://www.bioblast.at/index.php/MiR05).

After digitonin permeabilization for 10 min, mitochondrial respiration was studied at 25°C by adding

sequentially  the  following  compounds:  glutamate  (10  mM)  and  malate  (2  mM),  ADP (2.5  mM),

succinate (10 mM), rotenone (0.5 µM), antimycin A (2.5 µM), TMPD / Ascorbate (0.5 mM / 2 mM),

cytochrome c (10 µM) and sodium azide (100 mM).

Chromatin Immunoprecipitation (ChIP)

5 × 106 GM-DC per biological replicate were cross-linked with 1% PFA at room temperature for 10 min,

lysed,  nuclei  were isolated and resuspended in 0.4 ml nuclear  lysis  buffer  containing 0.5% SDS.

Nuclei were sonicated using a Bioruptor (Diagenode) according to the manufacturer’s protocol, and

chromatin was immunoprecipitated with antibodies against CHOP, XBP-1, and control IgG overnight at

4°C, followed by 4 hr incubation in the presence of Protein A/G beads. After washing, bead-bound

chromatin was subject to decrosslinking for 4 hr at 65°C. DNA was purified using Agencourt AMPure

beads. Relative DNA enrichment was quantified and normalized to input DNA by qPCR using SYBR

Green Master Mix. Primers used for ChIP are listed in Table S2. 

RNA isolation

Total RNA was isolated from GM-DC using Trizol reagent. Total RNA from sorted cDC was isolated

using RNeasy Micro Kit.

Reverse transcription and real-time PCR

28



500 ng of total RNA isolated from GM-DC was treated with DNAse I and used to generate cDNA with

High-capacity cDNA reverse transcription kit. Gene expression was measured by SybrGreen based

qPCR. Results were normalized to the housekeeping genes  Hprt1 and  Rpl4, and the ΔΔCt method

was employed for all real-time PCR analyses. Primers used for real-time PCR are listed in Table S1.

Microarray analysis

200  ng  RNA from  GM-DC  was  amplified  with  GeneChip  WT  PLUS  Reagent  Kit,  labeled  with

GeneChip WT Terminal Labeling Kit. 5 ng RNA from sorted cDC was amplified with Ovation Pico WTA

Systems V2, labeled with GeneChip WT Terminal Labeling Kit. The resulting complementary RNAs

were  hybridized  on  the  GeneChip  Mouse  Gene  2.0  ST  Array  (Affymetrix)  according  to  the

manufacturer’s  protocol.  Microarray  data  were  normalized  by  the  Robust  Multi-Average  method

(Irizarry  et  al.,  2003)  by using affy  R package (Gautier  et  al.,  2004).  Transcripts  associated with

annotated genes were selected for analysis. The expression dataset was collapsed to gene levels

using  a  max-median  approach  following  selection  of  top  15000  genes  with  maximal  average

expression levels  among all  experimental  groups using Phantasus.  Differentially  expressed genes

were identified by using limma R package (Smyth, 2005), which uses an empirical Bayesian approach

to estimate variances in moderated t tests. Raw P values were adjusted for multiple testing using the

Benjamini–Hochberg procedure.

Protein Analysis 

Whole cell  lysate from 1 × 106  GM-DC was extracted using RIPA lysis  buffer  supplemented with

complete protease inhibitor cocktail and PhosSTOP phosphotase inhibitors. Proteins were diluted in

Nupage LDS sample buffer, heated at 65°C for 5 min, and loaded on 4–12% NuPAGE Bis-Tris Gel.

Proteins were transferred to nitrocellulose membrane using iBlot 2 Transfer stacks and blotted with

commercial antibodies mentioned in the figure legends and the Key Resources Table.

Seahorse assays

2.5 × 105 GM-DC per well were seeded in a XF24 plate and analyzed in a Seahorse XFe24 Analyzer.

Oxygen consumption rate (OCR) and extracellular acidification rate (ECAR) were measured in DMEM

with 25 mM glucose and 2 mM glutamine with or without of 0.5 mM PA, before and after the sequential

injection  of  0.75  µM  oligomycin,  1.5  µM  FCCP,  1µM  of  rotenone/antimycin  A,  and  50  mM  2-

deoxyglucose. Mixing, waiting, and measurement times were 4, 2, and 2 min (3, 1, and 1 min in some

experiments), respectively. Measures were normalized by total protein. Basal and maximal respiration
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values  were  calculated  by  subtraction  of  OCR  value  after  treatment  of  cells  with  rotenone  and

antimycin A (which corresponds to non-mitochondrial respiration) from OCR values in cells treated

with glucose or with oligomycin and FCCP, respectively. Glycolysis and glycolytic capacity values were

calculated  by  subtraction  of  ECAR  value  after  treatment  of  cells  with  2-deoxyglucose (which

corresponds to non-glycolytic acidification) from ECAR values in cells treated with glucose or with

oligomycin, respectively.

Measurement of fatty acid oxidation

Fatty acid oxidation was measured as described previously (Haas et al., 2012). Briefly, 5 × 105 GM-DC

per biological replicate were pre-treated for 21 hr with IMQ or IMQ + 500µM PA. Cells were then

switched to oxidation media containing 1mM carnitine, 500 µM PA, and 1µCi/mL 14C-PA for 3 hr. Media

was acidified with 70% perchloric acid and CO2 was captured with 1N NaOH. Complete oxidation

(captured  CO2)  and  incomplete  oxidation  (acid  soluble  metabolites,  ASMs)  were  calculated  by

counting the NaOH and cleared, acidified media.

Metabolomics

Metabolite  extraction of  GM-DC was performed on 2.5 million per well  using 70°C aqueous 70%

ethanol as described previously (Jha et al.,  2015). Prior to collection, cells were treated with BSA

(control),  500µM  PA,  IMQ  or  IMQ  +  500µM  PA for  24  hours.  At  collection,  cells  were  placed

immediately on ice, the media was removed and cells were washed three times with ice-cold PBS to

remove residual media. Intracellular metabolites were extracted twice with hot ethanol using 10µM

norvaline as an internal control. For LCMS, samples where dried under nitrogen flow and reconstituted

in a milliQ water/acetonitrile  (1:1)  mixture for  injection  using a UPLC Acquity  (Waters)  separation

system  coupled  with  a  Xevo  G2  ToF  (Waters)  as  described  (Paglia  et  al.,  2012)  with  slight

modification. Compounds were ionized using an electrospray ionization source in negative mode. Data

processing was performed in MATLAB (Mathworks, Inc.) using a custom made in-house protocol.

Compound identification was performed using both retention time of authentic standards and accurate

mass with an accepted deviation of  0.005 Da.  For  GCMS, samples were derivatized with methyl

chloroformate as described (Smart  et  al.,  2010) with slight  modifications.  Analysis  was performed

using GC (7890B,  Agilent)  coupled to  a  quadropole  detector  (59977B,  Agilent)  and controlled  by

ChemStation  software  (Agilent).  Raw  data  was  converted  to  netCDF  format  using  Chemstation

(Agilent),  before  processing  in  Matlab  R2014b  (Mathworks,  Inc.)  using  PARADISe  software  as

described (Johnsen et al., 2017). In both cases, samples were randomized prior to injection. All MS

sample processing and analysis were performed by MS-Omics, Inc. (Copenhagen, Denmark).
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Histology

Mouse skin samples were fixed in ImmunoHistoFix and embedded in ImmunoHistoWax at 37°C. 5µm

sections were stained with May-Grünwald Giemsa for measurement of epidermal thickness by using a

Nikon Eclipse Ti-E microscope with NIS-Elements imaging software. Average epidermal thickness was

determined as a mean of 10 measures calculated for each skin sample. We did blind investigators

during epidermal thickness measurement.

QUANTIFICATION AND STATISTICAL ANALYSES

Statistical analyses of biological data

Data are presented as mean ± SEM. We tested whether data were normally distributed by Shapiro-

Wilk test and examined quantile-quantile plots. Levene's test was used to analyze homogeneity of

variances.  For  a  two-group  comparison  two-sided  Student’s  t-test  was  used.  For  more  than  two

groups data were analyzed by ANOVA, or two-way ANOVA, followed by Tukey's (when we compared

each group with every other group) or Sidak (when we compared groups within separate time points in

repeated  measures  ANOVA)  post-hoc tests  for  multiple  comparisons.  In  case  of  data  showing

differences compared to normal distribution we applied two-sided Mann-Whitney U-test.  Statistical

analyses were performed with Prism 6 or R software. p < 0.05 was considered to be statistically

significant and is presented as * p < 0.05, ** p < 0.01, *** p < 0.001, or **** p < 0.0001.

DATA AND SOFTWARE AVAILABILITY 

The accession numbers for microarray datasets reported in this paper are publicly available at the

NCBI Gene Expression Omnibus: GSE68750, GSE110962, and GSE110963.
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Supplemental Table S1

Gene Forward Reverse

Hprt1 GTGATTAGCGATGATGAACC GCAAGTCTTTCAGTCCTGTC

Il23a CCAGCAGCTCTCTCGGAATC AAGCAGAACTGGCTGTTGTC

Rpl4 CTGAACCCTTACGCCAAGAC CCTTCTCGGATTTGGTTGCC

Pfkfb3 CCGCTCTCATCTGTCTCGTG CCCACAGGATCTGGGCAAC

Hspa5 TGCAGCAGGACATCAAGTTC TACGCCTCAGCAGTCTCCTT 

Ddit3 CCTAGCTTGGCTGACAGAGG CTGCTCCTTCTCCTTCATGC

Xbp1 CCTGAGCCCGGAGGAGAA CTCGAGCAGTCTGCGCTG

Xbp1s GAGTCCGCAGCAGGTG GTGTCAGAGTCCATGGGA 

Il6 CCACGGCCTTCCCTACTTCA CCACGATTTCCCAGAGAACATG

Il12a CAAACCAGCACATTGAAGA AGCTCCCTCTTGTTGTGGAA

Hif1a CGCCTCTGGACTTGTCTCTT TCGACGTTCAGAACTCATCCT

Prkaa1 ACCTGAGAACGTCCTGCTTGATGC CACCTCGGGGCCTGCGTACA

Prkaa2 TGCTGGATGCCCAGATGAACGC CCTCAGGTGCTGCATAATTTGGCG

Gls TGCGAACATCTGATCCCAGG TGAATTTGGCCAGCTGAGGA

Gls2 CTCGACTTGGTGACCTGCTT GCACAATGTTGCTGCTCACA

Mapk8 GTCATTCTCGGCATGGGCTA CTGGGAACAAAACACCACCTT

Mapk9 CTGGGCATGGGCTACAAAGA TGAACTCTGCGGATGGTGTT

Cpt1a ACGTTGGACGAATCGGAACA  CCATGCAGCAGAGATTTGGC

Cpt2 CAACTCGTATACCCAAACCCAGTC GTTCCCATCTTGATCGAGGACATC

Pfkl CCGCTGTAAGGCCTTCACTACGAG TTATCGATGGAGCCCACCAGACC

Pfkp CCCATGGTTATGGTTCCTGCT GTCCCACTGGCTGACTGTTT

Atf4 GTGGCCAAGCACTTGAAACC GGAAAAGGCATCCTCCTTGC

Atf5 GGGCACGGCTAGAAGGAAAT AGGCAGCGTGGAAGATTGTT

Atf3 CTTCCCCAGTGGAGCCAATC TCATTTTGCTCCAGTCTTCGC

Krt16 CGGCCCACTGAGATCAAAGA AGCTCATTCTCGTACTTGGTCC

Sprr1b CCAGCGACCACACTACCTGT TTGTTGCTCATGCAACTGTGG

S100a8 CCGTCTTCAAGACATCGTTTGA GTAGAGGGCATGGTGATTTCCT

S100a9 AATGGTGGAAGCACAGTTGG CTGGTTTGTGTCCAGGTCCTC

Il1f9 TACAGCTTGGGGAAGGGAACA TAGAGCAGACAGCGATGAACC

Lce3c TCAGCACAGCCTTCTTCTCC GCACTTTGGGGAGCACTTTG



Supplemental Table S2 
 
Region Forward Reverse 
Il23a-ChIP-SiteA GCTTCCAACCCTCCAGATCC ACCTTCCCAGTCCTCCAAGT 
Il23a-ChIP-SiteB CCTCTAGCCACAACAACCTC CCTTCACACTAGCAGGTGACT 
Il23a-ChIP-SiteC TTGCATCCACGGGTAAAACC GCTTCCCTGGGTGTTACATCA 

 



KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER
Antibodies
GRP78 (BiP), rabbit polyclonal Ab Abcam Cat# ab21685
PERK, clone C33E10, rabbit monoclonal Ab Cell Signaling Cat# 3192
IRE1α, clone 14C10, rabbit monoclonal Ab Cell Signaling Cat# 3294
GADD 153 (CHOP), rabbit polyclonal Ab Santa Cruz Cat# sc-575
GADD 153 (CHOP), clone B-3, mouse monoclonal 
Ab

Santa Cruz Cat# sc-7351

TBP, clone mAbcam 51841, mouse monoclonal Ab Abcam Cat# ab51841
-Tubulin, clone TUB 2.1, mouse monoclonal Ab Sigma Cat# T5201
XBP-1, rabbit polyclonal Ab Santa Cruz Cat# sc-7160
ATF6, clone 70B1413, mouse monoclonal Ab Abcam Cat# ab11909
Hexokinase I, clone C35C4, mouse monoclonal Ab Cell Signaling Cat# 2024
ATF5, clone EPR18286, rabbit monoclonal Ab Abcam Cat# ab184923
VDAC1, clone B-6, mouse monoclonal Ab Santa Cruz Cat# sc-390996
JNK, rabbit polyclonal Ab Cell Signaling Cat# 9252
Phospho-JNK, clone G9, mouse monoclonal Ab Cell Signaling Cat# 9255
Normal rabbit IgG Cell Signaling Cat# 2729
CD19 PE-CF594, clone 1D3, mouse monoclonal Ab BD Biosciences Cat# 562291
CD3 FITC, clone 145-2C11, hamster monoclonal Ab BD Biosciences Cat# 562286
CD64 BV711, clone X54-5/7.1, mouse monoclonal 
Ab

Biolegend Cat# 139311

Ly6G PE-Cy7, clone 1A8, rat monoclonal Ab Biolegend Cat# 127618
MHCII IA/IE Alexa Fluor 700 Biolegend Cat# 107622
CD11c APC-Cy7, clone M5/114.15.2, rat monoclonal 
Ab

Biolegend Cat# 117324

IL-6 PE, clone MP5-20F3, rat monoclonal Ab Biolegend Cat# 504504
IL23p19  eFlour660, clone fc23cpg, rat monoclonal 
Ab

eBioscience Cat# 50-7023-80

Chemicals, Peptides, and Recombinant Proteins
Recombinant mouse GM-CSF PeproTech Cat# 315-03
2-NBDG Thermo Fisher Cat# N13195
MitoTracker Green FM Thermo Fisher Cat# M7514
MitoSOX Red Thermo Fisher Cat# M36008
LPS from E. coli Sigma Cat# L3024
Pam3CSK4 InvivoGen Cat# tlrl-pms
Poly(I:C) InvivoGen Cat# tlrl-pic
Imiquimod Calbiochem Cat CAS 99001-02-6
Curdlan InvivoGen Cat# tlrl-curd
Furfurman InvivoGen Cat# tlrl-ffm
SN50 Enzo Cat# BML-P600-0005
Sodium dichloroacetate (DCA) Tocris Cat# 2755
Triacsin C Cayman chemical Cat# 76896-80-5
Recombinant murine TNF-α PeproTech Cat# 315-01A



Recombinant murine IL-1 PeproTech Cat# 211-11B
MitoPQ Abcam Cat# ab146819
Palmitic acid Sigma Cat# P0500
Oleic acid Sigma Cat# O1008
2-methylhexadecanoic acid Sigma Cat# PH010298
Linoleic acid Sigma Cat# L1376
Octanoic acid Sigma O3907
Bovine serum Albumin, essentially fatty acid free Sigma Cat# A6003
Etomoxir Sigma Cat# E1905
2-deoxy-D-glucose Sigma Cat# D6134
Rotenone Sigma Cat# R8875
Metformin Sigma Cat# D150959
MitoTEMPO Sigma Cat# SML0737
4μ8C Tocris Cat# 4479
GSK2606414 Calbiochem Cat# CAS 1337531-

89-1
Tunicamycin Sigma Cat# SMB00071
Glucose Sigma Cat# G8769
RIPA buffer Cell Signaling Cat# 9806
Complete Protease inhibitor cocktail Sigma Cat# 

00000001169749800
1

PhosSTOP Sigma Cat# 
00000004906845001

Control “Lanette” cream Fagron Cat#  1289-511
HyClone Fetal calf serum (FCS) GE Healthcare Cat# SH30071

Critical Commercial Assays
Zombie UV Fixable Viability Kit Biolegend Cat# 423107
Ovation Pico WTA System V2 NuGen Cat# 3302
GeneChip WT PLUS Reagent Kit Affymetrix Cat# 902118
GeneChip WT Terminal Labeling Kit Affymetrix Cat# 900720
GeneChip Mouse Gene 2.0 ST Array Affymetrix Cat# 902500
Pierce Protein A/G magnetic beads Thermo Fisher Cat# 88802
Agencourt AMPure Beckman Coulter Cat# A63880
Mouse IL-23 DuoSet ELISA R&D Systems Cat#  DY1887
RNAaeasy Micro Kit Qiagen Cat# 74004
Dnase I, Rnase-free Thermo Fisher Cat# EN0521
High-capacity cDNA reverse transcription kit Thermo Fisher Cat# 4319983
NuPAGE LDS Sample buffer Thermo Fisher Cat# NP0007
NuPAGE 4-12% Bis-Tris Protein Gel Thermo Fisher Cat# NP0321BOX
iBlot 2 nitrocellulose Transfer stacks Thermo Fisher Cat# IB23001
Lactate Assay Kit Trinity Biotech Cat# 735-10
GSH-Glo™ Glutathione Assay Promega Cat# V6911
Glucose Uptake-Glo™ Assay Promega Cat# J1341
Glucose-6-Phosphate  Dehydrogenase  Activity

Assay

Cayman Cat# 700300

KDalertTM GAPDH Assay Thermo Fischer Cat# AM1639
ADP/ATP Ratio Assay Kit Abcam Cat# ab65313
Trizol reagent Thermo Fisher Cat# A33251



Mouse Dendritic Cell Nucleofector Kit / Nucleofector

II/2b

Lonza Cat# VPA-1011

Seahorse XF Cell Mito Stress Test Kit Agilent Technologies Cat# 103015-100
SYBR Green Master Mix Diagenode Cat# DMMLD2D600

Deposited Data
Mouse skin microarray data This paper GSE68750
GM-DC microarray data This paper GSE110962
cDC microarray data This paper GSE110963

Experimental Models: Cell Lines
Bone marrow-derived dendritic cells differentiated in
the presence of GM-CSF (GM-DC)

This paper N/A

Experimental Models: Organisms/Strains
Mouse: Tlr4−/−: B6.B10ScN-Tlr4lps-del/JthJ Institut Pasteur de 

Lille, France
007227

Mouse: Acod1−/− : C57BL/6NJ-Acod1em1(IMPC)J/J Institut Pasteur de 
Lille, France

MGI:5749792

Mouse: Prkaa1+/−: 129S2/SvPas-Prkaa1tm1Sbj Institut Cochin, Rene 
Descartes University, 
Paris, France

MGI:3029359

Mouse: Prkaa1−/−: 129S2/SvPas-Prkaa1tm1Sbj Institut Cochin, Rene 
Descartes University, 
Paris, France

MGI:3029359

Mouse:  Hif1aVav/Vav: B6.129-Hif1atm3Rsjo/J; (CBA/Ca
x C57BL/10)F2-Tg(Vav1-icre)A2Kio

MRC Centre for 
Regenerative 
Medicine, University of
Edinburgh, UK

N/A

Mouse:  Hif1afl/flRosa26CreE: 

B6.129-Hif1atm3Rsjo/J; B6-129-

Gt(ROSA)26Sortm1(cre/ERT)Nat/J; 

Department of 
Molecular Medicine 
and Gene Therapy, 
Lund Stem Cell 
Center, Sweden

N/A

Mouse: Ddit3−/−:  B6.129S(Cg)-Ddit3tm2.1Dron/J Division of Molecular 
Biology. Institute for 
Genome Research, 
Tokushima University, 
Japan 

005530

Mouse: Xbp1CD11c/CD11c: 129S6/SvEvTac-Xbp1tm2Glm;

B6.Cg-Tg(Itgax-cre)1-1Reiz/J

VIB Center for 
Inflammation, Gent 
University, Belgium; or
Department of 
Medicine, Weill Cornell
Medical College, New 
York, USA 

N/A

Mouse:  Ddit3−/−Xbp1CD11c/CD11c:  B6.129S(Cg)-

Ddit3tm2.1Dron/J;  129S6/SvEvTac-Xbp1tm2Glm;

B6.Cg-Tg(Itgax-cre)1-1Reiz/J

VIB Center for 
Inflammation, Gent 
University, Belgium

N/A

Mouse: ERAi: Tg(CAG-XBP1*/Venus)#Miur VIB Center for 
Inflammation, Gent 
University, Belgium

MGI:4939273



Mouse:  Hif1aTie2/Tie2: B6.129-Hif1atm3Rsjo/J; (B6.Cg-

Tg(Tek-cre)1Ywa/J

William Harvery 
Research Institutes, 
Queen Mary University
London, UK

N/A

Mouse: Cpt1aItgax/Itgax: Cpt1atm1.1Pec; B6.Cg-
Tg(Itgax-cre)1-1Reiz/J

Institute  of  Infection

Immunology,

Hannover, Germany

N/A

Mouse: Cpt1aZbtb46/Zbtb46: Cpt1atm1.1Pec; 
Zbtb46tm1Kmm/J

William  Harvery

Research  Institutes,

Queen Mary University

London, UK

N/A

Mouse: WT: C57BL/6J Charles River 027
Oligonucleotides
Mouse Cpt1a siRNA Dharmacon Cat# M-042456
Mouse Cpt2 siRNA Dharmacon Cat# M-043177
Mouse Pfkl siRNA Dharmacon Cat# M-060388
Mouse Pfkp siRNA Dharmacon Cat# M-059341
Mouse Atf3 siRNA Dharmacon Cat# M-058604
Mouse Atf4 siRNA Dharmacon Cat# M-042737
Mouse Atf5 siRNA Dharmacon Cat# M-045123
Mouse Mapk8 siRNA Dharmacon Cat# M-040128
Mouse Mapk9 siRNA Dharmacon Cat# M-040134
Mouse Gls siRNA Dharmacon Cat# M-043336
Mouse Gls2 siRNA Dharmacon Cat# M-063540
SiGENOME non-targeting siRNA pool #1 Dharmacon Cat# D-001206
Mouse Pfkfb3 siRNA OriGene Cat# SR416726
Universal scrambled negative control siRNA OriGene Cat# SR30004
Mouse qPCR Primers, see Table S1 N/A N/A
ChIP-qPCR Primers, see Table S2 N/A N/A

Recombinant DNA

Software and Algorithms
Prism version 6 GraphPad N/A
GSEA Desktop v3.0 Broad Institute http://

software.broadinstitut
e.org/gsea/index.jsp

Affy version 1.60.0 Bioconductor http://
bioconductor.org/
packages/release/
bioc/html/affy.html

Limma version 3.38.3 Bioconductor http://
bioconductor.org/
packages/release/
bioc/html/limma.html

FlowJo version 8 Tree Star https://
www.flowjo.com/



Phantasus Artyomov Lab, 

Washington University

in St. Louis

https://
artyomovlab.wustl.ed
u/phantasus/

Diva version 7.0 Becton Dickinson http://
www.bdbiosciences.c
om/us/instruments/
research/software/
flow-cytometry-
acquisition/bd-
facsdiva-software/m/
111112/overview

Other
High Fat Diet (HFD; 60% kcal fat) Research diets Cat# D12492
Aldara 5% IMQ cream Meda AB N/A

DMEM media Thermo Fisher Cat# 11960044

Mitochondrial Respirometry Solution (MiR05) Oroboros Instruments # 60101-01 
http://www.bioblast.a
t/index.php/MiR05-
Kit

ImmunoHistoFix Gentaur # amp-202
ImmunoHistoWax Gentaur # amp-201
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