32 research outputs found

    Wavepacket basis for time-dependent processes and its application to relaxation in resonant electronic transport

    Full text link
    Stroboscopic wavepacket basis sets [P. Bokes, F. Corsetti, R. W. Godby, Phys. Rev. Lett. 101, 046402 (2008)] are specifically tailored for a description of time-dependent processes in extended systems like non-periodic geometries of various contacts consisting of solids and molecules. The explanation of the construction of such a basis for two simple finite systems is followed by a review of the general theory for extended systems with continuous spectrum. The latter is further elaborated with the introduction of the interaction representation which takes the full advantage of the time-dynamics built into the basis. The formalism is applied to a semi-analytical example of electronic transport through resonant tunnelling barrier in 1D. Through the time-dependent generalisation of the Landauer formula given in terms of the Fourier expansion of the transmission amplitude we analyze the temporal character of the onset of the steady-state. Various time-scales in this process are shown to be directly related to the energetic structure of the resonant barrier

    Methane in the atmosphere of the transiting hot Neptune GJ436b?

    Get PDF
    We present an analysis of seven primary transit observations of the hot Neptune GJ436b at 3.6, 4.5 and 8 μ8~\mum obtained with the Infrared Array Camera (IRAC) on the Spitzer Space Telescope. After correcting for systematic effects, we fitted the light curves using the Markov Chain Monte Carlo technique. Combining these new data with the EPOXI, HST and ground-based V,I,HV, I, H and KsK_s published observations, the range 0.510 μ0.5-10~\mum can be covered. Due to the low level of activity of GJ436, the effect of starspots on the combination of transits at different epochs is negligible at the accuracy of the dataset. Representative climate models were calculated by using a three-dimensional, pseudo-spectral general circulation model with idealised thermal forcing. Simulated transit spectra of GJ436b were generated using line-by-line radiative transfer models including the opacities of the molecular species expected to be present in such a planetary atmosphere. A new, ab-initio calculated, linelist for hot ammonia has been used for the first time. The photometric data observed at multiple wavelengths can be interpreted with methane being the dominant absorption after molecular hydrogen, possibly with minor contributions from ammonia, water and other molecules. No clear evidence of carbon monoxide and dioxide is found from transit photometry. We discuss this result in the light of a recent paper where photochemical disequilibrium is hypothesised to interpret secondary transit photometric data. We show that the emission photometric data are not incompatible with the presence of abundant methane, but further spectroscopic data are desirable to confirm this scenario.Comment: 19 pages, 10 figures, 1 table, Astrophysical Journal in pres

    Multi-messenger observations of a binary neutron star merger

    Get PDF
    On 2017 August 17 a binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors. The Fermi Gamma-ray Burst Monitor independently detected a gamma-ray burst (GRB 170817A) with a time delay of ~1.7 s with respect to the merger time. From the gravitational-wave signal, the source was initially localized to a sky region of 31 deg2 at a luminosity distance of 40+8-8 Mpc and with component masses consistent with neutron stars. The component masses were later measured to be in the range 0.86 to 2.26 Mo. An extensive observing campaign was launched across the electromagnetic spectrum leading to the discovery of a bright optical transient (SSS17a, now with the IAU identification of AT 2017gfo) in NGC 4993 (at ~40 Mpc) less than 11 hours after the merger by the One- Meter, Two Hemisphere (1M2H) team using the 1 m Swope Telescope. The optical transient was independently detected by multiple teams within an hour. Subsequent observations targeted the object and its environment. Early ultraviolet observations revealed a blue transient that faded within 48 hours. Optical and infrared observations showed a redward evolution over ~10 days. Following early non-detections, X-ray and radio emission were discovered at the transient’s position ~9 and ~16 days, respectively, after the merger. Both the X-ray and radio emission likely arise from a physical process that is distinct from the one that generates the UV/optical/near-infrared emission. No ultra-high-energy gamma-rays and no neutrino candidates consistent with the source were found in follow-up searches. These observations support the hypothesis that GW170817 was produced by the merger of two neutron stars in NGC4993 followed by a short gamma-ray burst (GRB 170817A) and a kilonova/macronova powered by the radioactive decay of r-process nuclei synthesized in the ejecta
    corecore