68 research outputs found

    Challenges for Routine Health System Data Management in a Large Public Programme to Prevent Mother-to-Child HIV Transmission in South Africa

    Get PDF
    Background: Recent changes to South Africa's prevention of mother-to-child transmission of HIV (PMTCT) guidelines have raised hope that the national goal of reducing perinatal HIV transmission rates to less than 5% can be attained. While programmatic efforts to reach this target are underway, obtaining complete and accurate data from clinical sites to track progress presents a major challenge. We assessed the completeness and accuracy of routine PMTCT data submitted to the district health information system (DHIS) in three districts of Kwazulu-Natal province, South Africa. Methodology/Principal Findings: We surveyed the completeness and accuracy of data reported for six key PMTCT data elements between January and December 2007 from all 316 clinics and hospitals in three districts. Through visits to randomly selected sites, we reconstructed reports for the same six PMTCT data elements from clinic registers and assessed accuracy of the monthly reports previously submitted to the DHIS. Data elements were reported only 50.3% of the time and were “accurate” (i.e. within 10% of reconstructed values) 12.8% of the time. The data element “Antenatal Clients Tested for HIV” was the most accurate data element (i.e. consistent with the reconstructed value) 19.8% of the time, while “HIV PCR testing of baby born to HIV positive mother” was the least accurate with only 5.3% of clinics meeting the definition of accuracy. Conclusions/Significance: Data collected and reported in the public health system across three large, high HIV-prevalence Districts was neither complete nor accurate enough to track process performance or outcomes for PMTCT care. Systematic data evaluation can determine the magnitude of the data reporting failure and guide site-specific improvements in data management. Solutions are currently being developed and tested to improve data quality

    Statistical epistasis between candidate gene alleles for complex tuber traits in an association mapping population of tetraploid potato

    Get PDF
    Association mapping using DNA-based markers is a novel tool in plant genetics for the analysis of complex traits. Potato tuber yield, starch content, starch yield and chip color are complex traits of agronomic relevance, for which carbohydrate metabolism plays an important role. At the functional level, the genes and biochemical pathways involved in carbohydrate metabolism are among the best studied in plants. Quantitative traits such as tuber starch and sugar content are therefore models for association genetics in potato based on candidate genes. In an association mapping experiment conducted with a population of 243 tetraploid potato varieties and breeding clones, we previously identified associations between individual candidate gene alleles and tuber starch content, starch yield and chip quality. In the present paper, we tested 190 DNA markers at 36 loci scored in the same association mapping population for pairwise statistical epistatic interactions. Fifty marker pairs were associated mainly with tuber starch content and/or starch yield, at a cut-off value of q ≤ 0.20 for the experiment-wide false discovery rate (FDR). Thirteen marker pairs had an FDR of q ≤ 0.10. Alleles at loci encoding ribulose-bisphosphate carboxylase/oxygenase activase (Rca), sucrose phosphate synthase (Sps) and vacuolar invertase (Pain1) were most frequently involved in statistical epistatic interactions. The largest effect on tuber starch content and starch yield was observed for the paired alleles Pain1-8c and Rca-1a, explaining 9 and 10% of the total variance, respectively. The combination of these two alleles increased the means of tuber starch content and starch yield. Biological models to explain the observed statistical epistatic interactions are discussed

    Characterization of an Alkali- and Halide-Resistant Laccase Expressed in E. coli: CotA from <i>Bacillus clausii</i>

    Get PDF
    The limitations of fungal laccases at higher pH and salt concentrations have intensified the search for new extremophilic bacterial laccases. We report the cloning, expression, and characterization of the bacterial cotA from Bacillus clausii, a supposed alkalophilic ortholog of cotA from B. subtilis. Both laccases were expressed in E. coli strain BL21(DE3) and characterized fully in parallel for strict benchmarking. We report activity on ABTS, SGZ, DMP, caffeic acid, promazine, phenyl hydrazine, tannic acid, and bilirubin at variable pH. Whereas ABTS, promazine, and phenyl hydrazine activities vs. pH were similar, the activity of B. clausii cotA was shifted upwards by ~0.5-2 pH units for the simple phenolic substrates DMP, SGZ, and caffeic acid. This shift is not due to substrate affinity (K(M)) but to pH dependence of catalytic turnover: The k(cat) of B. clausii cotA was 1 s⁻¹ at pH 6 and 5 s⁻¹ at pH 8 in contrast to 6 s⁻¹ at pH 6 and 2 s⁻¹ at pH 8 for of B. subtilis cotA. Overall, k(cat)/K(M) was 10-fold higher for B. subtilis cotA at pH(opt). While both proteins were heat activated, activation increased with pH and was larger in cotA from B. clausii. NaCl inhibited activity at acidic pH, but not up to 500-700 mM NaCl in alkaline pH, a further advantage of the alkali regime in laccase applications. The B. clausii cotA had ~20 minutes half-life at 80°C, less than the ~50 minutes at 80°C for cotA from B. subtilis. While cotA from B. subtilis had optimal stability at pH~8, the cotA from B. clausii displayed higher combined salt- and alkali-resistance. This resistance is possibly caused by two substitutions (S427Q and V110E) that could repel anions to reduce anion-copper interactions at the expense of catalytic proficiency, a trade-off of potential relevance to laccase optimization

    De novo implantation vs. upgrade cardiac resynchronization therapy: a systematic review and meta-analysis

    Get PDF
    Patients with conventional pacemakers or implanted defibrillators are often considered for cardiac resynchronization therapy (CRT). Our aim was to summarize the available evidences regarding the clinical benefits of upgrade procedures. A systematic literature search was performed from studies published between 2006 and 2017 in order to compare the outcome of CRT upgrade vs. de novo implantations. Outcome data on all-cause mortality, heart failure events, New York Heart Association (NYHA) Class, QRS narrowing and echocardiographic parameters were analysed. A total of 16 reports were analysed comprising 489,568 CRT recipients, of whom 468,205 patients underwent de novo and 21,363 upgrade procedures. All-cause mortality was similar after CRT upgrade compared to de novo implantations (RR 1.19, 95% CI 0.88-1.60, p = 0.27). The risk of heart failure was also similar in both groups (RR 0.96, 95% CI 0.70-1.32, p = 0.81). There was no significant difference in clinical response after CRT upgrade compared to de novo implantations in terms of improvement in left ventricular ejection fraction (DeltaEF de novo - 6.85% vs. upgrade - 9.35%; p = 0.235), NYHA class (DeltaNYHA de novo - 0.74 vs. upgrade - 0.70; p = 0.737) and QRS narrowing (DeltaQRS de novo - 9.6 ms vs. upgrade - 29.5 ms; p = 0.485). Our systematic review and meta-analysis of currently available studies reports that CRT upgrade is associated with similar risk for all-cause mortality compared to de novo resynchronization therapy. Benefits on reverse remodelling and functional capacity improved similarly in both groups suggesting that CRT upgrade may be safely and effectively offered in routine practice. CLINICAL TRIAL REGISTRATION: Prospero Database-CRD42016043747

    Burden of musculoskeletal disorders in the Eastern Mediterranean Region, 1990-2013: findings from the Global Burden of Disease Study 2013.

    Get PDF
    OBJECTIVES: We used findings from the Global Burden of Disease Study 2013 to report the burden of musculoskeletal disorders in the Eastern Mediterranean Region (EMR). METHODS: The burden of musculoskeletal disorders was calculated for the EMR's 22 countries between 1990 and 2013. A systematic analysis was performed on mortality and morbidity data to estimate prevalence, death, years of live lost, years lived with disability and disability-adjusted life years (DALYs). RESULTS: For musculoskeletal disorders, the crude DALYs rate per 100 000 increased from 1297.1 (95% uncertainty interval (UI) 924.3-1703.4) in 1990 to 1606.0 (95% UI 1141.2-2130.4) in 2013. During 1990-2013, the total DALYs of musculoskeletal disorders increased by 105.2% in the EMR compared with a 58.0% increase in the rest of the world. The burden of musculoskeletal disorders as a proportion of total DALYs increased from 2.4% (95% UI 1.7-3.0) in 1990 to 4.7% (95% UI 3.6-5.8) in 2013. The range of point prevalence (per 1000) among the EMR countries was 28.2-136.0 for low back pain, 27.3-49.7 for neck pain, 9.7-37.3 for osteoarthritis (OA), 0.6-2.2 for rheumatoid arthritis and 0.1-0.8 for gout. Low back pain and neck pain had the highest burden in EMR countries. CONCLUSIONS: This study shows a high burden of musculoskeletal disorders, with a faster increase in EMR compared with the rest of the world. The reasons for this faster increase need to be explored. Our findings call for incorporating prevention and control programmes that should include improving health data, addressing risk factors, providing evidence-based care and community programmes to increase awareness

    Multi-messenger observations of a binary neutron star merger

    Get PDF
    On 2017 August 17 a binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors. The Fermi Gamma-ray Burst Monitor independently detected a gamma-ray burst (GRB 170817A) with a time delay of ~1.7 s with respect to the merger time. From the gravitational-wave signal, the source was initially localized to a sky region of 31 deg2 at a luminosity distance of 40+8-8 Mpc and with component masses consistent with neutron stars. The component masses were later measured to be in the range 0.86 to 2.26 Mo. An extensive observing campaign was launched across the electromagnetic spectrum leading to the discovery of a bright optical transient (SSS17a, now with the IAU identification of AT 2017gfo) in NGC 4993 (at ~40 Mpc) less than 11 hours after the merger by the One- Meter, Two Hemisphere (1M2H) team using the 1 m Swope Telescope. The optical transient was independently detected by multiple teams within an hour. Subsequent observations targeted the object and its environment. Early ultraviolet observations revealed a blue transient that faded within 48 hours. Optical and infrared observations showed a redward evolution over ~10 days. Following early non-detections, X-ray and radio emission were discovered at the transient’s position ~9 and ~16 days, respectively, after the merger. Both the X-ray and radio emission likely arise from a physical process that is distinct from the one that generates the UV/optical/near-infrared emission. No ultra-high-energy gamma-rays and no neutrino candidates consistent with the source were found in follow-up searches. These observations support the hypothesis that GW170817 was produced by the merger of two neutron stars in NGC4993 followed by a short gamma-ray burst (GRB 170817A) and a kilonova/macronova powered by the radioactive decay of r-process nuclei synthesized in the ejecta
    corecore