352 research outputs found

    Management of primary chronic headache in the general population: the Akershus study of chronic headache

    Get PDF
    Primary chronic headaches cause more disability and necessitate high utilisation of health care. Our knowledge is based on selected populations, while information from the general population is largely lacking. An age and gender-stratified cross-sectional epidemiological survey included 30,000 persons aged 30–44 years. Respondents with self-reported chronic headache were interviewed by physicians. The International Classification of Headache Disorders was used. Of all primary chronic headache sufferers, 80% had consulted their general practitioner (GP), of these 19% had also consulted a neurologist and 4% had been hospitalised. Co-occurrence of migraine increased the probability of contact with a physician. A high Severity of Dependence Scale score increased the probability for contact with a physician. Complementary and alternative medicine (CAM) was used by 62%, most often physiotherapy, acupuncture and chiropractic. Contact with a physician increased the probability of use of CAM. Acute headache medications were taken by 87%, while only 3% used prophylactic medication. GPs manage the majority of those with primary chronic headache, 1/5 never consults a physician for their headache, while approximately 1/5 is referred to a neurologist or hospitalised. Acute headache medication was frequently overused, while prophylactic medication was rarely used. Thus, avoidance of acute headache medication overuse and increased use of prophylactic medication may improve the management of primary chronic headaches in the future

    Measurement of the cross-section of high transverse momentum vector bosons reconstructed as single jets and studies of jet substructure in pp collisions at √s = 7 TeV with the ATLAS detector

    Get PDF
    This paper presents a measurement of the cross-section for high transverse momentum W and Z bosons produced in pp collisions and decaying to all-hadronic final states. The data used in the analysis were recorded by the ATLAS detector at the CERN Large Hadron Collider at a centre-of-mass energy of √s = 7 TeV;{\rm Te}{\rm V}andcorrespondtoanintegratedluminosityof and correspond to an integrated luminosity of 4.6\;{\rm f}{{{\rm b}}^{-1}}.ThemeasurementisperformedbyreconstructingtheboostedWorZbosonsinsinglejets.ThereconstructedjetmassisusedtoidentifytheWandZbosons,andajetsubstructuremethodbasedonenergyclusterinformationinthejetcentreofmassframeisusedtosuppressthelargemultijetbackground.ThecrosssectionforeventswithahadronicallydecayingWorZboson,withtransversemomentum. The measurement is performed by reconstructing the boosted W or Z bosons in single jets. The reconstructed jet mass is used to identify the W and Z bosons, and a jet substructure method based on energy cluster information in the jet centre-of-mass frame is used to suppress the large multi-jet background. The cross-section for events with a hadronically decaying W or Z boson, with transverse momentum {{p}_{{\rm T}}}\gt 320\;{\rm Ge}{\rm V}andpseudorapidity and pseudorapidity |\eta |\lt 1.9,ismeasuredtobe, is measured to be {{\sigma }_{W+Z}}=8.5\pm 1.7$ pb and is compared to next-to-leading-order calculations. The selected events are further used to study jet grooming techniques

    Search for direct pair production of the top squark in all-hadronic final states in proton-proton collisions at s√=8 TeV with the ATLAS detector

    Get PDF
    The results of a search for direct pair production of the scalar partner to the top quark using an integrated luminosity of 20.1fb−1 of proton–proton collision data at √s = 8 TeV recorded with the ATLAS detector at the LHC are reported. The top squark is assumed to decay via t˜→tχ˜01 or t˜→ bχ˜±1 →bW(∗)χ˜01 , where χ˜01 (χ˜±1 ) denotes the lightest neutralino (chargino) in supersymmetric models. The search targets a fully-hadronic final state in events with four or more jets and large missing transverse momentum. No significant excess over the Standard Model background prediction is observed, and exclusion limits are reported in terms of the top squark and neutralino masses and as a function of the branching fraction of t˜ → tχ˜01 . For a branching fraction of 100%, top squark masses in the range 270–645 GeV are excluded for χ˜01 masses below 30 GeV. For a branching fraction of 50% to either t˜ → tχ˜01 or t˜ → bχ˜±1 , and assuming the χ˜±1 mass to be twice the χ˜01 mass, top squark masses in the range 250–550 GeV are excluded for χ˜01 masses below 60 GeV

    Search for pair-produced long-lived neutral particles decaying to jets in the ATLAS hadronic calorimeter in ppcollisions at √s=8TeV

    Get PDF
    The ATLAS detector at the Large Hadron Collider at CERN is used to search for the decay of a scalar boson to a pair of long-lived particles, neutral under the Standard Model gauge group, in 20.3fb−1of data collected in proton–proton collisions at √s=8TeV. This search is sensitive to long-lived particles that decay to Standard Model particles producing jets at the outer edge of the ATLAS electromagnetic calorimeter or inside the hadronic calorimeter. No significant excess of events is observed. Limits are reported on the product of the scalar boson production cross section times branching ratio into long-lived neutral particles as a function of the proper lifetime of the particles. Limits are reported for boson masses from 100 GeVto 900 GeV, and a long-lived neutral particle mass from 10 GeVto 150 GeV

    Rab11 and Actin Cytoskeleton Participate in Giardia lamblia Encystation, Guiding the Specific Vesicles to the Cyst Wall

    Get PDF
    The encystation process is crucial for survival and transmission of Giardia lamblia to new hosts. During this process, vesicular trafficking and the cytoskeleton play important roles. In eukaryotic cells, intracellular transport is regulated by proteins, including Rab-GTPases and SNAREs, which regulate vesicle formation along with recognition of and binding to the target membrane. Cytoskeletal structures are also involved in these processes. In this study, we demonstrate the participation of Rab11 in the transport of encystation-specific vesicles (ESVs). Additionally, we demonstrate that disruption of actin microfilaments affects ESVs transport. The modification of actin dynamics was also correlated with a reduction in rab11 and cwp1 expression. Furthermore, down-regulation of rab11 mRNA by a specific hammerhead ribozyme caused nonspecific localization of CWP1. We thus provide new information about the molecular machinery that regulates Giardia lamblia encystation. Given our findings, Rab11 and actin may be useful targets to block Giardia encystation

    Efficacy of Anti-Inflammatory Therapy in a Model of Acute Seizures and in a Population of Pediatric Drug Resistant Epileptics

    Get PDF
    Targeting pro-inflammatory events to reduce seizures is gaining momentum. Experimentally, antagonism of inflammatory processes and of blood-brain barrier (BBB) damage has been demonstrated to be beneficial in reducing status epilepticus (SE). Clinically, a role of inflammation in the pathophysiology of drug resistant epilepsies is suspected. However, the use anti-inflammatory drug such as glucocorticosteroids (GCs) is limited to selected pediatric epileptic syndromes and spasms. Lack of animal data may be one of the reasons for the limited use of GCs in epilepsy. We evaluated the effect of the CG dexamethasone in reducing the onset and the severity of pilocarpine SE in rats. We assessed BBB integrity by measuring serum S100β and Evans Blue brain extravasation. Electrophysiological monitoring and hematologic measurements (WBCs and IL-1β) were performed. We reviewed the effect of add on dexamethasone treatment on a population of pediatric patients affected by drug resistant epilepsy. We excluded subjects affected by West, Landau-Kleffner or Lennox-Gastaut syndromes and Rasmussen encephalitis, known to respond to GCs or adrenocorticotropic hormone (ACTH). The effect of two additional GCs, methylprednisolone and hydrocortisone, was also reviewed in this population. When dexamethasone treatment preceded exposure to the convulsive agent pilocarpine, the number of rats developing status epilepticus (SE) was reduced. When SE developed, the time-to-onset was significantly delayed compared to pilocarpine alone and mortality associated with pilocarpine-SE was abolished. Dexamethasone significantly protected the BBB from damage. The clinical study included pediatric drug resistant epileptic subjects receiving add on GC treatments. Decreased seizure frequency (≥50%) or interruption of status epilepticus was observed in the majority of the subjects, regardless of the underlying pathology. Our experimental results point to a seizure-reducing effect of dexamethasone. The mechanism encompasses improvement of BBB integrity. Our results also suggest that add on GCs could be of efficacy in controlling pediatric drug resistant seizures

    Individual and combined soy isoflavones exert differential effects on metastatic cancer progression

    Get PDF
    To investigate the effects soy isoflavones in established cancers, the role of genistein, daidzein, and combined soy isoflavones was studied on progression of subcutaneous tumors in nude mice created from green fluorescent protein (GFP) tagged-MDA-MB-435 cells. Following tumor establishment, mice were gavaged with vehicle or genistein or daidzein at 10 mg/kg body weight (BW) or a combination of genistein (10 mg/kg BW), daidzein (9 mg/kg BW), and glycitein (1 mg/kg BW) three times per week. Tumor progression was quantified by whole body fluorescence image analysis followed by microscopic image analysis of excised organs for metastases. Results show that daidzein increased while genistein decreased mammary tumor growth by 38 and 33% respectively, compared to vehicle. Daidzein increased lung and heart metastases while genistein decreased bone and liver metastases. Combined soy isoflavones did not affect primary tumor growth but increased metastasis to all organs tested, which include lung, liver, heart, kidney, and bones. Phosphoinositide-3-kinase (PI3-K) pathway real time PCR array analysis and western blotting of excised tumors demonstrate that genistein significantly downregulated 10/84 genes, including the Rho GTPases RHOA, RAC1, and CDC42 and their effector PAK1. Daidzein significantly upregulated 9/84 genes that regulate proliferation and protein synthesis including EIF4G1, eIF4E, and survivin protein levels. Combined soy treatment significantly increased gene and protein levels of EIF4E and decreased TIRAP gene expression. Differential regulation of Rho GTPases, initiation factors, and survivin may account for the disparate responses of breast cancers to genistein and daidzein diets. This study indicates that consumption of soy foods may increase metastasis

    Multiphysics and Thermodynamic Formulations for Equilibrium and Non-equilibrium Interactions: Non-linear Finite Elements Applied to Multi-coupled Active Materials

    Get PDF
    [EN] Combining several theories this paper presents a general multiphysics framework applied to the study of coupled and active materials, considering mechanical, electric, magnetic and thermal fields. The framework is based on thermodynamic equilibrium and non-equilibrium interactions, both linked by a two-temperature model. The multi-coupled governing equations are obtained from energy, momentum and entropy balances; the total energy is the sum of thermal, mechanical and electromagnetic parts. The momentum balance considers mechanical plus electromagnetic balances; for the latter the Abraham rep- resentation using the Maxwell stress tensor is formulated. This tensor is manipulated to automatically fulfill the angular momentum balance. The entropy balance is for- mulated using the classical Gibbs equation for equilibrium interactions and non-equilibrium thermodynamics. For the non-linear finite element formulations, this equation requires the transformation of thermoelectric coupling and conductivities into tensorial form. The two-way thermoe- lastic Biot term introduces damping: thermomechanical, pyromagnetic and pyroelectric converse electromagnetic dynamic interactions. Ponderomotrix and electromagnetic forces are also considered. The governing equations are converted into a variational formulation with the resulting four-field, multi-coupled formalism implemented and val- idated with two custom-made finite elements in the research code FEAP. Standard first-order isoparametric eight-node elements with seven degrees of freedom (dof) per node (three displacements, voltage and magnetic scalar potentials plus two temperatures) are used. Non-linearities and dynamics are solved with Newton-Raphson and New- mark-b algorithms, respectively. Results of thermoelectric, thermoelastic, thermomagnetic, piezoelectric, piezomag- netic, pyroelectric, pyromagnetic and galvanomagnetic interactions are presented, including non-linear depen- dency on temperature and some second-order interactions.This research was partially supported by grants CSD2008-00037 Canfranc Underground Physics, Polytechnic University of Valencia under programs PAID 02-11-1828 and 05-10-2674. The first author used the grant Generalitat Valenciana BEST/2014/232 for the completion of this work.Pérez-Aparicio, JL.; Palma, R.; Taylor, R. (2016). Multiphysics and Thermodynamic Formulations for Equilibrium and Non-equilibrium Interactions: Non-linear Finite Elements Applied to Multi-coupled Active Materials. Archives of Computational Methods in Engineering. 23:535-583. https://doi.org/10.1007/s11831-015-9149-9S53558323Abraham M (1910) Sull’elettrodinamica di Minkowski. Rend Circ Mat 30:33–46Allik H, Hughes TJR (1970) Finite elment method for piezoelectric vibration. Int J Numer Methods Eng 2:151–157Antonova EE, Looman DC (2005) Finite elements for thermoelectric device analysis in ANSYS. In: International conference on thermoelectricsAtulasimha J, Flatau AB (2011) A review of magnetostrictive iron–gallium alloys. Smart Mater Struct 20:1–15Ballato A (1995) Piezoelectricity: old effect, new thrusts. IEEE Trans Ultrason Ferroelectr Freq Control 42(5):916–926Baoyuan S, Jiantong W, Jun Z, Min Q (2003) A new model describing physical effects in crystals: the diagrammatic and analytic methods for macro-phenomenological theory. J Mater Process Technol 139:444–447Bargmann S, Steinmann P (2005) Finite element approaches to non-classical heat conduction in solids. Comput Model Eng Sci 9(2):133–150Bargmann S, Steinmann P (2006) Theoretical and computational aspects of non-classical thermoelasticity. Comput Methods Appl Mech Eng 196:516–527Bargmann S, Steinmann P (2008) Modeling and simulation of first and second sound in solids. Int J Solids Struct 45:6067–6073Barnett SM (2010) Resolution of the Abraham–Minkowski dilemma. Phys Rev Lett 104:070401Benbouzid MH, Meunier G, Meunier G (1995) Dynamic modelling of giant magnetostriction in Terfenol-D rods by the finite element method. IEEE Trans Magn 31(3):1821–1824Benbouzid MH, Reyne G, Meunier G (1993) Nonlinear finite element modelling of giant magnetostriction. IEEE Trans Magn 29(6):2467–2469Benbouzid MH, Reyne G, Meunier G (1995) Finite elment modelling of magnetostrictive devices: investigations for the design of the magnetic circuit. IEEE Trans Magn 31(3):1813–1816Besbes M, Ren Z, Razek A (1996) Finite element analysis of magneto-mechanical coupled phenomena in magnetostrictive materials. IEEE Trans Magn 32(3):1058–1061Biot MA (1956) Thermoelasticity and irreversible thermodynamics. J Appl Phys 27(3):240–253Bisio G, Cartesegna M, Rubatto G (2001) Thermodynamic analysis of elastic systems. Energy Convers Manag 42:799–812Blun SL (1974) Materials for radiation detection. National Academy of Sciences, WashingtonBonet J, Wood RD (1997) Nonlinear continuum mechanics for finite element analysis. Cambridge University Press, CambridgeBorovik-Romanov AS (1960) Piezomagnetism in the antiferromagnetic fluorides of cobalt and manganese. Sov Phys 11:786Bowyer P (2005) The momentum of light in media: the Abraham–Minkowski controversy. http://bit.ly/1M7wyATBrauer JR, Ruehl JJ, MacNeal BE, Hirtenfelder F (1995) Finite element analysis of Hall effect and magnetoresistance. IEEE Trans Electron Devices 42(2):328–333Bustamante R, Dorfmann A, Ogden RW (2009) On electric body forces and Maxwell stresses in nonlinearly electroelastic solids. Int J Eng Sci 47:1131–1141Callen HB (1948) The application of Onsager’s reciprocal relations to thermoelectric, thermomagnetic, and galvanomagnetic effects. Phys Rev 73(11):1349–1358Callen HB (1985) Thermodynamics and an introduction to thermostatistics. Wiley, New YorkCarter JP, Booker JR (1989) Finite element analysis of coupled thermoelasticity. Comput Struct 31(1):73–80Cattaneo C (1938) Sulla conduzione del calore. Atti Semin Mat Fis Univ Modena 3:83–1013Chaplik AV (2000) Some exact solutions for the classical Hall effect in an inhomogeneous magnetic field. JETP Lett 72:503Chen PJ, Gurtin ME (1968) On a theory of heat conduction involving two temperatures. J Z Angew Math Phys ZAMP 19(4):614–627Chu LJ, Haus HA, Penfield P (1966) The force density in polarizable and magnetizable fluids. In: Proceedings of the IEEEClin Th, Turenne S, Vasilevskiy D, Masut RA (2009) Numerical simulation of the thermomechanical behavior of extruded bismuth telluride alloy module. J Electron Mater 38(7):994–1001Coleman BD (1964) Thermodynamics of materials with memory. Arch Ration Mech Anal 17:1–46de Groot SR (1961) Non-equilibrium themodynamics of systems in an electromagnetic field. J Nucl Energy C Plasma Phys 2:188–194de Groot SR, Mazur P (1984) Non-equilibrium thermodynamics. Dover, MineolaDebye P (1913) On the theory of anomalous dispersion in the region of long-wave electromagnetic radiation. Verh dtsch phys Ges 15:777–793del Castillo LF, García-Colín LS (1986) Thermodynamic basis for dielectric relaxation in complex materials. Phys Rev B 33(7):4944–4951Delves RT (1964) Figure of merit for Ettingshausen cooling. Br J Appl Phys 15:105–106Dorf RC (1997) The electrical engineering handbook. CRC Press, UKEarle R, Richards JFC (1956) Theophrastus: on stones. Ohio State University, ColumbusEbling D, Jaegle M, Bartel M, Jacquot A, Bottner H (2009) Multiphysics simulation of thermoelectric systems for comparison with experimental device performance. J Electron Mater 38(7):1456–1461El-Karamany AS, Ezzat MA (2011) On the two-temperature Green–Naghdi thermoelasticity theories. J Therm Stress 34:1207–1226Eringen AC (1980) Mechanics of continua. Robert E Krieger, MalabarEringen AC, Maugin GA (1990) Electrodynamics of continua I. Springer, New YorkErsoy Y (1984) A new nonlinear constitutive theory for conducting magnetothermoelastic solids. Int J Eng Sci 22(6):683–705Ersoy Y (1986) A new nonlinear constitutive theory of electric and heat conductions for magnetoelastothermo-electrical anisotropic solids. Int J Eng Sci 24(6):867–882Ferrari A, Mittica A (2013) Thermodynamic formulation of the constitutive equations for solids and fluids. Energy Convers Manag 66:77–86Galushko D, Ermakov N, Karpovski M, Palevski A, Ishay JS, Bergman DJ (2005) Electrical, thermoelectric and thermophysical properties of hornet cuticle. Semicond Sci Technol 20:286–289Gao JL, Du QG, Zhang XD, Jiang XQ (2011) Thermal stress analysis and structure parameter selection for a Bi2Te3-based thermoelectric module. J Electron Mater 40(5):884–888Gaudenzi P, Bathe KJ (1995) An iterative finite element procedure for the analysis of piezoelectric continua. J Intell Mater Syst Struct 6:266–273Gavela D, Pérez-Aparicio JL (1998) Peltier pellet analysis with a coupled, non-linear 3D finite element model. In: 4th European workshop on thermoelectricsGoudreau GL, Taylor RL (1972) Evaluation of numerical integration methods in elastodynamics. Comput Methods Appl Mech Eng 2:69–97Griffiths DJ (1999) Introduction to electrodynamics. Prentice-Hall Inc, Upper Saddle RiverGros L, Reyne G, Body C, Meunier G (1998) Strong coupling magneto mechanical methods applied to model heavy magnetostrictive actuators. IEEE Trans Magn 34(5):3150–3153Gurtin ME, Williams WO (1966) On the Clausius–Duhem inequality. J Z Angew Math Phys ZAMP 17(5):626–633Hamader VM, Patil TA, Chovan SH (1987) Free vibration response of two-dimensional magneto-electro-elastic laminated plates. Build Mater Sci 9:249–253Hausler C, Milde G, Balke H, Bahr HA, Gerlach G (2001) 3-D modeling of pyroelectric sensor arrays part I: multiphysics finite-element simulation. IEEE Sens J 8(12):2080–2087He Y (2004) Heat capacity, thermal conductivity and thermal expansion of barium titanate-based ceramics. Thermochimica 419:135–141Hernández-Lemus E, Orgaz E (2002) Hysteresis in nonequilibrium steady states: the role of dissipative couplings. Rev Mex Fís 48:38–45Hinds EA (2009) Momentum exchange between light and a single atom: Abraham or Minkowski? Phys Rev Lett 102:050403Hirsinger L, Billardon R (1995) Magneto-elastic finite element analysis including magnetic forces and magnetostriction effects. IEEE Trans Magn 31(3):1877–1880Huang MJ, Chou PK, Lin MC (2008) An investigation of the thermal stresses induced in a thin-film thermoelectric cooler. J Therm Stress 31:438–454IEEE Standards Board (1988) IEEE standard on piezoelectricity. ANSI/IEEE Std 176-1987. doi: 10.1109/IEEESTD.1988.79638IEEE Standards Board (1991) IEEE standard on magnetostrictive materials: piezomagnetic nomenclature. IEEE Std 319-1990. doi: 10.1109/IEEESTD.1991.101048Ioffe Institute (2013) INSb—indium antimonide. Ioffe Institute. www.ioffe.rssi.ru/SVA/NSM/Semicond/InSb/index.htmlJackson JD (1962) Classical electrodynamics. Wiley, New YorkJaegle M (2008) Multiphysics simulation of thermoelectric systems—modeling of Peltier—cooling and thermoelectric generation. In: Proceedings of the COMSOLJaegle M, Bartel M, Ebling D, Jacquot A, Bottner H (2008) Multiphysics simulation of thermoelectric systems. In: European conference on thermoelectrics ECT2008Jiménez JL, Campos I (1996) Advanced electromagnetism: foundations, theory and applications, chapter The balance equations of energy and momentum in classical electrodynamics. World Scientific Publishing, SingaporeJohnstone S (2008) Is there potential for use of the Hall effect in analytical science? Analyst 133:293–296Jou D, Lebon G (1996) Extended irreversible thermodynamics. Springer, BerlinKaltenbacher M, Kaltenbacher B, Hegewald T, Lerch R (2010) Finite element formulation for ferroelectric hysteresis of piezoelectric materials. J Intell Mater Syst Struct 21:773–785Kaltenbacher M, Meiler M, Ertl M (2009) Physical modeling and numerical computation of magnetostriction. Int J Comput Math Electr Electron Eng 28(4):819–832Kamlah M, Bohle U (2001) Finite element analysis of piezoceramic components taking into account ferroelectric hysteresis behavior. Int J Solids Struct 38:605–633Kannan KS, Dasgupta A (1997) A nonlinear Galerkin finite-element theory for modeling magnetostrictive smart structures. Smart Mater Struct 6:341–350Kiang J, Tong L (2010) Nonlinear magneto-mechanical finite element analysis of Ni–Mn–Ga single crystals. Smart Mater Struct 19:1–17Kinsler P, Favaro A, McCall MW (2009) Four Poynting theorems. Eur J Phys 30:983–993Klinckel S, Linnemann K (2008) A phenomenological constitutive model for magnetostrictive materials and ferroelectric ceramics. Proc Appl Math Mech 8:10507–10508Kosmeier D (2013) Hornets: Gentle Giants! Wikipedia: the free encyclopedia. www.hornissenschutz.de/hornets.htmLahmer T (2008) Forward and inverse problems in piezoelectricity. PhD thesis, Universität Erlangen-NürnbergLandau LD, Lifshitz EM (1982) Mechanics. Butterworth-Heinemann, OxfordLandau LD, Lifshitz EM (1984) Electrodynamics of continuous media. Pergamon Press, OxfordLandis CM (2002) A new finite-element formulation for electromechanical boundary value problems. Int J Numer Methods Eng 55:613–628Díaz Lantada A (2011) Handbook of active materials for medical devices: advances and applications. CRC Press, Boca RatonLebon G, Jou D, Casas-Vázquez J (2008) Understanding non-equilibrium thermodynamics. Springer, BerlinLinnemann K, Klinkel S (2006) A constitutive model for magnetostrictive materials—theory and finite element implementation. Proc Appl Math Mech 6:393–394Linnemann K, Klinkel S, Wagner W (2009) A constitutive model for magnetostrictive and piezoelectric materials. Int J Solids Struct 46:1149–1166Llebot JE, Jou D, Casas-Vázquez J (1983) A thermodynamic approach to heat and electric conduction in solids. Physica 121(A):552–562Lu X, Hanagud V (2004) Extended irreversible thermodynamics modeling for self-heating and dissipation in piezoelectric ceramics. IEEE Trans Ultrason Ferroelectr Freq Control 51(12):1582–1592Lubarda VA (2004) On thermodynamic potentials in linear thermoelasticity. Int J Solids Struct 41:7377–7398Mansuripur M (2012) Trouble with the lorentz law of force: incompatibility with special relativity and momentum conservation. Phys Rev Lett 108:193901Maruszewski B, Lebon G (1986) An extended irreversible thermodynamic description of electrothermoelastic semiconductors. Int J Eng Sci 24(4):583–593McMeeking RM, Landis CM (2005) Electrostatic forces and stored energy for deformable dielectric materials. J Appl Mech 72:581–590McMeeking RM, Landis CM, Jimenez MA (2007) A principle of virtual work for combined electrostatic and mechanical loading of materials. Int J Non Linear Mech 42:831–838MELCOR (2000) Thermoelectric handbook. Melcor, a unit of Laird Technologies. http://www.lairdtech.comMinkowski H (1908) Nachr. ges. wiss. Gottingen 53Naranjo B, Gimzewski JK, Putterman S (2005) Observation of nuclear fusion driven by a pyroelectric crystal. Nature 28(434):1115–1117Nédélec JC (1980) Mixed finite elements in R3{R}^3 R 3 . Numer Math 35:314–345Nettleton RE, Sobolev SL (1995) Applications of extended thermodynamics to chemical, rheological, and transport processes: a special survey part I. approaches and scalar rate processes. J Non-Equilib Thermodyn 20:205–229Nettleton RE, Sobolev SL (1995) Applications of extended thermodynamics to chemical, rheological, and transport processes: a special survey part II. vector transport processes, shear relaxation and rheology. J Non-Equilib Thermodyn 20:297–331Nettleton RE, Sobolev SL (1996) Applications of extended thermodynamics to chemical, rheological, and transport processes: a special survey part III. wave phenomena. J Non-Equilib Thermodyn 21:1–16Newmark N (1959) A method of computation for structural dynamics. ASCE J Eng Mech 85:67–94Newnham RE (2005) Properties of materials: anisotropy, symmetry, structure. Oxford University Press, OxfordNour AE, Abd-Alla N, Maugin GA (1990) Nonlinear equations for thermoelastic magnetizable conductors. Int J Eng Sci 27(7):589–603Nowacki A (1962) International series of monographs in aeronautics and astronautics. Pergamon Press, OxfordOkumura H, Hasegawa Y, Nakamura H, Yamaguchi S (1999) A computational model of thermoelectric and thermomagnetic semiconductors. In: 18th international conference on thermoelectricsOkumura H, Yamaguchi S, Nakamura H, Ikeda K, Sawada K (1998) Numerical computation of thermoelectric and thermomagnetic effects. In: 17th international conference on thermoelectricsOliver X, Agelet C (2000) Continuum mechanics for engineers. Edicions UPC, Barcelona. http://hdl.handle.net/2099.3/36197Shankar K, Kondaiah P, Ganesan N (2013) Pyroelectric and pyromagnetic effects on multiphase magneto-electro-elastic cylindrical shells for axisymmetric temperature. Smart Mater Struct 22(2):025007Palma R, Pérez-Aparicio JL, Bravo R (2013) Study of hysteretic thermoelectric behavior in photovoltaic materials using the finite element method, extended thermodynamics and inverse problems. Energy Convers Manag 65:557–563Palma R, Pérez-Aparicio JL, Taylor RL (2012) Non-linear finite element formulation applied to thermoelectric materials under hyperbolic heat conduction model. Comput Method Appl Mech Eng 213–216:93–103Palma R, Rus G, Gallego R (2009) Probabilistic inverse problem and system uncertainties for damage detection in piezoelectrics. Mech Mater 41:1000–1016Pérez-Aparicio JL, Gavela D (1998) 3D, non-linear coupled, finite element model of thermoelectricity. In: 4th European workshop on thermoelectricsPérez-Aparicio JL, Palma R, Taylor RL (2012) Finite element analysis and material sensitivity of Peltier thermoelectric cells coolers. Int J Heat Mass Transf 55:1363–1374Pérez-Aparicio JL, Sosa H (2004) A continuum three-dimensional, fully coupled, dynamic, non-linear finite element formulation for magnetostrictive materials. Smart Mater Struct 13:493–502Perez-Aparicio JL, Sosa H, Palma R (2007) Numerical investigations of field-defect interactions in piezoelectric ceramics. Int J Solids Struct 44:4892–4908Pérez-Aparicio JL, Taylor RL, Gavela D (2007) Finite element analysis of nonlinear fully coupled thermoelectric materials. Comput Mech 40:35–45Qi H, Fang D, Yao Z (1997) FEM analysis of electro-mechanical coupling effect of piezoelectric materials. Comput Mater Sci 8:283–290Pérez-Aparicio JL, Palma R, Abouali-Sánchez S (2014) Complete finite element method analysis of galvanomagnetic and thermomagnetic effects. Appl Therm Eng (submitted)Perez-Aparicio JL, Palma R, Moreno-Navarro P (2014) Elasto-thermoelectric non-linear, fully coupled, and dynamic finite element analysis of pulsed thermoelectrics. Appl Therm Eng (submitted)Ramírez F, Heyliger PR, Pan E (2006) Free vibration response of two-dimensional magneto-electro-elastic laminated plates. J Sound Vib 292:626–644Reitz JR, Milford FJ (1960) Foundations of electromagnetic theory. Addison-Wesley, BostonReng Z, Ionescu B, Besbes M, Razek A (1995) Calculation of mechanical deformation of magnetic materials in electromagnetic devices. IEEE Trans Magn 31(3):1873–1876Restuccia L (2010) On a thermodynamic theory for magnetic relaxation phenomena due to n microscopic phenomena described by n internal variables. J Non-Equilib Thermodyn 35:379–413Restuccia L, Kluitenberg GA (1988) On generalizations of the Debye equation for dielectric relaxation. Phys A 154:157–182Restuccia L, Kluitenberg GA (1992) On the heat dissipation function for dielectric relaxation phenomena in anisotropic media. Int J Eng Sci 30(3):305–315Riffat SB, Ma X (2003) Thermoelectrics: a review of present and potential applications. Appl Therm Eng 23:913–935Rinaldi C, Brenner H (2002) Body versus surface forces in continuum mechanics: is the Maxwell stress tensor a physically objective Cauchy stress? Phys Rev E 65:036615Rowe DM (ed) (1995) CRC handbook of thermoelectrics. CRC Press, UKRus G, Palma R, Pérez-Aparicio JL (2009) Optimal measurement setup for damage detection in piezoelectric plates. Int J Eng Sci 47:554–572Rus G, Palma R, Pérez-Aparicio JL (2012) Experimental design of dynamic model-based damage identification in piezoelectric ceramics. Mech Syst Signal Process 26:268–293Sadiku MNO (2001) Numerical techniques in electromagnetics. CRC Press LLC, Boca RatonSemenov AS, Kessler H, Liskowsky A, Balke H (2006) On a vector potential formulation for 3D electromechanical finite element analysis. Commun Numer Methods Eng 22:357–375Serra E, Bonaldi M (2008) A finite element formulation for thermoelastic damping analysis. Int J Numer Methods Eng 78(6):671–691Several. Wikipedia. Wikipedia: The Free Encyclopedia, SeveralSoh AK, Liu JX (2005) On the constitutive equations of magnetoelectroelastic solids. J Intell Mater Syst Struct 16:597–602Stefanescu DM (2011) Handbook of force transducers: principles and components. Springer, BerlinTamma KK, Namburu RR (1992) An effective finite element modeling/analysis approach for dynamic thermoelasticity due to second sound effects. Comput Mech 9:73–84Tang T, Yu W (2009) Micromechanical modeling of the multiphysical behavior of smart materials using the variational asymptotic method. Smart Mater Struct 18:1–14Taylor RL (2010) FEAP a finite element analysis program: user manual. University of California, Berkeley. http://www.ce.berkeley.edu/feapThurston RN (1994) Warren p. Mason (1900–1986) physicist, engineer, inventor, author, teacher. IEEE Trans Ultrason Ferroelectr Freq Control 41(4):425–434Tian X, Shen Y, Chen C, He T (2006) A direct finite element method study of generalized thermoelastic problems. Int J Solids Struct 43:2050–2063Tinder RF (2008) Tensor properties of solids: phenomenological development of the tensor properties of crystals. Morgan and Claypool, San RafaelTruesdell C (1968) Thermodynamics for beginners, in irreversible aspects of continuum mechanics. Springer, BerlinTzou HS, Ye R (1996) Pyroelectric and thermal strain effects of piezoelectric (PVDF and PZT) devices. Mech Syst Signal Process 10(4):459–469Walser R (1972) Application of pyromagnetic phenomena to radiation detection

    Search for new phenomena in final states with an energetic jet and large missing transverse momentum in pp collisions at root s = 8 TeV with the ATLAS detector (vol 75, 299, 2015)

    Get PDF
    Results of a search for new phenomena in final states with an energetic jet and large missing transverse momentum are reported. The search uses 20.3 fb−1 of √s=8 TeV data collected in 2012 with the ATLAS detector at the LHC. Events are required to have at least one jet with pT>120 GeV and no leptons. Nine signal regions are considered with increasing missing transverse momentum requirements between EmissT>150 GeV and EmissT>700 GeV. Good agreement is observed between the number of events in data and Standard Model expectations. The results are translated into exclusion limits on models with either large extra spatial dimensions, pair production of weakly interacting dark matter candidates, or production of very light gravitinos in a gauge-mediated supersymmetric model. In addition, limits on the production of an invisibly decaying Higgs-like boson leading to similar topologies in the final state are presented
    corecore