320 research outputs found

    Dopamine receptor alterations in female rats with diet-induced decreased brain docosahexaenoic acid (DHA): interactions with reproductive status

    Get PDF
    Decreased tissue levels of n-3 (omega-3) fatty acids, particularly docosahexaenoic acid (DHA), are implicated in the etiologies of non-puerperal and postpartum depression. This study examined the effects of a diet-induced loss of brain DHA content and concurrent reproductive status on dopaminergic parameters in adult female Long–Evans rats. An α-linolenic acid-deficient diet and breeding protocols were used to produce virgin and parous female rats with cortical phospholipid DHA levels 20–22% lower than those fed a control diet containing adequate α-linolenic acid. Decreased brain DHA produced a significant main effect of decreased density of ventral striatal D2-like receptors. Virgin females with decreased DHA also exhibited higher density of D1-like receptors in the caudate nucleus than virgin females with normal DHA. These receptor alterations are similar to those found in several rodent models of depression, and are consistent with the proposed hypodopaminergic basis for anhedonia and motivational deficits in depression

    Pivotal Role of the α2A-Adrenoceptor in Producing Inflammation and Organ Injury in a Rat Model of Sepsis

    Get PDF
    Background: Norepinephrine (NE) modulates the responsiveness of macrophages to proinflammatory stimuli through the activation of adrenergic receptors (ARs). Being part of the stress response, early increases of NE in sepsis sustain adverse systemic inflammatory responses. The intestine is an important source of NE release in the early stage of cecal ligation and puncture (CLP)-induced sepsis in rats, which then stimulates TNF-a production in Kupffer cells (KCs) through the activation of the a2-AR. It is important to know which of the three a2-AR subtypes (i.e., a2A, a2B or a2C) is responsible for the upregulation of TNF-a production. The aim of this study was to determine the contribution of a2A-AR in this process. Methodology/Principal Findings: Adult male rats underwent CLP and KCs were isolated 2 h later. Gene expression of a2A-AR was determined. In additional experiments, cultured KCs were incubated with NE with or without BRL-44408 maleate, a specific a2A-AR antagonist, and intraportal infusion of NE for 2 h with or without BRL-44408 maleate was carried out in normal animals. Finally, the impact of a2A-AR activation by NE was investigated under inflammatory conditions (i.e., endotoxemia and CLP). Gene expression of the a2A-AR subtype was significantly upregulated after CLP. NE increased the release of TNF-a in cultured KCs, which was specifically inhibited by the a2A-AR antagonist BRL-44408. Equally, intraportal NE infusion increased TNF-a gene expression in KCs and plasma TNF-a which was also abrogated by co-administration of BRL-44408. NE also potentiated LPS-induced TNF-a release via the a2A-AR in vitro and in vivo. This potentiation of TNF-a release by NE was mediated through the a2A-AR coupled Gai protein and the activation of the p38 MAP kinase. Treatment of septic animals with BRL-44408 suppressed TNF-a, prevented multiple organ injury and significantly improved survival from 45% to 75%. Conclusions/Significance: Our novel finding is that hyperresponsiveness to a2-AR stimulation observed in sepsis is primarily due to an increase in a2A-AR expression in KCs. This appears to be in part responsible for the increased proinflammatory response and ensuing organ injury in sepsis. These findings provide important feasibility information for further developing the a2A-AR antagonist as a new therapy for sepsis

    Search for new phenomena in final states with an energetic jet and large missing transverse momentum in pp collisions at √ s = 8 TeV with the ATLAS detector

    Get PDF
    Results of a search for new phenomena in final states with an energetic jet and large missing transverse momentum are reported. The search uses 20.3 fb−1 of √ s = 8 TeV data collected in 2012 with the ATLAS detector at the LHC. Events are required to have at least one jet with pT > 120 GeV and no leptons. Nine signal regions are considered with increasing missing transverse momentum requirements between Emiss T > 150 GeV and Emiss T > 700 GeV. Good agreement is observed between the number of events in data and Standard Model expectations. The results are translated into exclusion limits on models with either large extra spatial dimensions, pair production of weakly interacting dark matter candidates, or production of very light gravitinos in a gauge-mediated supersymmetric model. In addition, limits on the production of an invisibly decaying Higgs-like boson leading to similar topologies in the final state are presente

    Current and prospective pharmacological targets in relation to antimigraine action

    Get PDF
    Migraine is a recurrent incapacitating neurovascular disorder characterized by unilateral and throbbing headaches associated with photophobia, phonophobia, nausea, and vomiting. Current specific drugs used in the acute treatment of migraine interact with vascular receptors, a fact that has raised concerns about their cardiovascular safety. In the past, α-adrenoceptor agonists (ergotamine, dihydroergotamine, isometheptene) were used. The last two decades have witnessed the advent of 5-HT1B/1D receptor agonists (sumatriptan and second-generation triptans), which have a well-established efficacy in the acute treatment of migraine. Moreover, current prophylactic treatments of migraine include 5-HT2 receptor antagonists, Ca2+ channel blockers, and β-adrenoceptor antagonists. Despite the progress in migraine research and in view of its complex etiology, this disease still remains underdiagnosed, and available therapies are underused. In this review, we have discussed pharmacological targets in migraine, with special emphasis on compounds acting on 5-HT (5-HT1-7), adrenergic (α1, α2, and β), calcitonin gene-related peptide (CGRP 1 and CGRP2), adenosine (A1, A2, and A3), glutamate (NMDA, AMPA, kainate, and metabotropic), dopamine, endothelin, and female hormone (estrogen and progesterone) receptors. In addition, we have considered some other targets, including gamma-aminobutyric acid, angiotensin, bradykinin, histamine, and ionotropic receptors, in relation to antimigraine therapy. Finally, the cardiovascular safety of current and prospective antimigraine therapies is touched upon

    [3H]Adenine is a suitable radioligand for the labeling of G protein-coupled adenine receptors but shows high affinity to bacterial contaminations in buffer solutions

    Get PDF
    [3H]Adenine has previously been used to label the newly discovered G protein-coupled murine adenine receptors. Recent reports have questioned the suitability of [3H]adenine for adenine receptor binding studies because of curious results, e.g. high specific binding even in the absence of mammalian protein. In this study, we showed that specific [3H]adenine binding to various mammalian membrane preparations increased linearly with protein concentration. Furthermore, we found that Tris-buffer solutions typically used for radioligand binding studies (50 mM, pH 7.4) that have not been freshly prepared but stored at 4°C for some time may contain bacterial contaminations that exhibit high affinity binding for [3H]adenine. Specific binding is abolished by heating the contaminated buffer or filtering it through 0.2-μm filters. Three different, aerobic, gram-negative bacteria were isolated from a contaminated buffer solution and identified as Achromobacter xylosoxidans, A. denitrificans, and Acinetobacter lwoffii. A. xylosoxidans, a common bacterium that can cause nosocomial infections, showed a particularly high affinity for [3H]adenine in the low nanomolar range. Structure–activity relationships revealed that hypoxanthine also bound with high affinity to A. xylosoxidans, whereas other nucleobases (uracil, xanthine) and nucleosides (adenosine, uridine) did not. The nature of the labeled site in bacteria is not known, but preliminary results indicate that it may be a high-affinity purine transporter. We conclude that [3H]adenine is a well-suitable radioligand for adenine receptor binding studies but that bacterial contamination of the employed buffer solutions must be avoided

    Dual alpha2C/5HT1A receptor agonist allyphenyline induces gastroprotection and inhibits fundic and colonic contractility

    Get PDF
    Allyphenyline, a novel α2-adrenoceptor (AR) ligand, has been shown to selectively activate α2C-adrenoceptors (AR) and 5HT1A receptors, but also to behave as a neutral antagonist of α2A-ARs. We exploited this unique pharmacological profile to analyze the role of α2C-ARs and 5HT1A receptors in the regulation of gastric mucosal integrity and gastrointestinal motility

    SOX2 Co-Occupies Distal Enhancer Elements with Distinct POU Factors in ESCs and NPCs to Specify Cell State

    Get PDF
    SOX2 is a master regulator of both pluripotent embryonic stem cells (ESCs) and multipotent neural progenitor cells (NPCs); however, we currently lack a detailed understanding of how SOX2 controls these distinct stem cell populations. Here we show by genome-wide analysis that, while SOX2 bound to a distinct set of gene promoters in ESCs and NPCs, the majority of regions coincided with unique distal enhancer elements, important cis-acting regulators of tissue-specific gene expression programs. Notably, SOX2 bound the same consensus DNA motif in both cell types, suggesting that additional factors contribute to target specificity. We found that, similar to its association with OCT4 (Pou5f1) in ESCs, the related POU family member BRN2 (Pou3f2) co-occupied a large set of putative distal enhancers with SOX2 in NPCs. Forced expression of BRN2 in ESCs led to functional recruitment of SOX2 to a subset of NPC-specific targets and to precocious differentiation toward a neural-like state. Further analysis of the bound sequences revealed differences in the distances of SOX and POU peaks in the two cell types and identified motifs for additional transcription factors. Together, these data suggest that SOX2 controls a larger network of genes than previously anticipated through binding of distal enhancers and that transitions in POU partner factors may control tissue-specific transcriptional programs. Our findings have important implications for understanding lineage specification and somatic cell reprogramming, where SOX2, OCT4, and BRN2 have been shown to be key factors

    Signal transduction underlying the control of urinary bladder smooth muscle tone by muscarinic receptors and β-adrenoceptors

    Get PDF
    The normal physiological contraction of the urinary bladder, which is required for voiding, is predominantly mediated by muscarinic receptors, primarily the M3 subtype, with the M2 subtype providing a secondary backup role. Bladder relaxation, which is required for urine storage, is mediated by β-adrenoceptors, in most species involving a strong β3-component. An excessive stimulation of contraction or a reduced relaxation of the detrusor smooth muscle during the storage phase of the micturition cycle may contribute to bladder dysfunction known as the overactive bladder. Therefore, interference with the signal transduction of these receptors may be a viable approach to develop drugs for the treatment of overactive bladder. The prototypical signaling pathway of M3 receptors is activation of phospholipase C (PLC), and this pathway is also activated in the bladder. Nevertheless, PLC apparently contributes only in a very minor way to bladder contraction. Rather, muscarinic-receptor-mediated bladder contraction involves voltage-operated Ca2+ channels and Rho kinase. The prototypical signaling pathway of β-adrenoceptors is an activation of adenylyl cyclase with the subsequent formation of cAMP. Nevertheless, cAMP apparently contributes in a minor way only to β-adrenoceptor-mediated bladder relaxation. BKCa channels may play a greater role in β-adrenoceptor-mediated bladder relaxation. We conclude that apart from muscarinic receptor antagonists and β-adrenoceptor agonists, inhibitors of Rho kinase and activators of BKCa channels may have potential to treat an overactive bladder

    A search for tt̄ resonances using lepton-plus-jets events in proton-proton collisions at √s = 8 TeV with the ATLAS detector

    Get PDF
    A search for new particles that decay into top quark pairs is reported. The search is performed with the ATLAS experiment at the LHC using an integrated luminosity of 20.3 fb−¹ of proton-proton collision data collected at a centre-of-mass energy of √s=8 TeV. The lepton-plus-jets final state is used, where the top pair decays to W+bW−b̄, with one W boson decaying leptonically and the other hadronically. The invariant mass spectrum of top quark pairs is examined for local excesses or deficits that are inconsistent with the Standard Model predictions. No evidence for a top quark pair resonance is found, and 95% confidence-level limits on the production rate are determined for massive states in benchmark models. The upper limits on the cross-section times branching ratio of a narrow Z′ boson decaying to top pairs range from 4.2 pb to 0.03 pb for resonance masses from 0.4 TeV to 3.0 TeV. A narrow leptophobic topcolour Z′ boson with mass below 1.8 TeV is excluded. Upper limits are set on the cross-section times branching ratio for a broad colour-octet resonance with Γ/m = 15% decaying to tt̄. These range from 4.8 pb to 0.03 pb for masses from 0.4 TeV to 3.0 TeV. A Kaluza-Klein excitation of the gluon in a Randall-Sundrum model is excluded for masses below 2.2 TeV

    Operation and performance of the ATLAS Tile Calorimeter in Run 1

    Get PDF
    The Tile Calorimeter is the hadron calorimeter covering the central region of the ATLAS experiment at the Large Hadron Collider. Approximately 10,000 photomultipliers collect light from scintillating tiles acting as the active material sandwiched between slabs of steel absorber. This paper gives an overview of the calorimeter’s performance during the years 2008–2012 using cosmic-ray muon events and proton–proton collision data at centre-of-mass energies of 7 and 8TeV with a total integrated luminosity of nearly 30 fb−1. The signal reconstruction methods, calibration systems as well as the detector operation status are presented. The energy and time calibration methods performed excellently, resulting in good stability of the calorimeter response under varying conditions during the LHC Run 1. Finally, the Tile Calorimeter response to isolated muons and hadrons as well as to jets from proton–proton collisions is presented. The results demonstrate excellent performance in accord with specifications mentioned in the Technical Design Report
    corecore