138 research outputs found

    Evaluation of developmental neurotoxicity: some important issues focused on neurobehavioral development

    Get PDF
    Exposure of the developing organism to industrial chemicals and physical factors represents a serious risk factor for the development of neurobehavioral disorders, such as attention-deficit hyperactivity disorder, autism and mental retardation. Appropriate animal models are needed to test potentially harmful effects and mechanisms of developmental neurotoxicity of various chemical substances. However, there are significant human vs. rat differences in the brain developmental profile which should be taken into account in neurotoxicity studies. Subtle behavioral alterations are hard to detect by traditional developmental toxicity and teratogenicity studies, and in many cases they remain hidden. They can however be revealed by using special behavioral, endocrine and/or pharmacological challenges, such as repeated behavioral testing, exposure to single stressful stimulus or drugs. Further, current neurobehavioral test protocols recommend to test animals up to their adulthood. However some behavioral alterations, such as anxiety-like behavior or mental deficiency, may become manifest in later periods of development. Our experimental and scientific experiences are highly suggestive for a complex approach in testing potential developmental neurotoxicity. Strong emphasis should be given on repeated behavioral testing of animals up to senescence and on using proper pharmacological and/or stressful challenges

    Advances in the treatment of prolactinomas

    Get PDF
    Prolactinomas account for approximately 40% of all pituitary adenomas and are an important cause of hypogonadism and infertility. The ultimate goal of therapy for prolactinomas is restoration or achievement of eugonadism through the normalization of hyperprolactinemia and control of tumor mass. Medical therapy with dopamine agonists is highly effective in the majority of cases and represents the mainstay of therapy. Recent data indicating successful withdrawal of these agents in a subset of patients challenge the previously held concept that medical therapy is a lifelong requirement. Complicated situations, such as those encountered in resistance to dopamine agonists, pregnancy, and giant or malignant prolactinomas, may require multimodal therapy involving surgery, radiotherapy, or both. Progress in elucidating the mechanisms underlying the pathogenesis of prolactinomas may enable future development of novel molecular therapies for treatment-resistant cases. This review provides a critical analysis of the efficacy and safety of the various modes of therapy available for the treatment of patients with prolactinomas with an emphasis on challenging situations, a discussion of the data regarding withdrawal of medical therapy, and a foreshadowing of novel approaches to therapy that may become available in the future
    corecore