2,220 research outputs found

    The correct estimate of the probability of false detection of the matched filter in the detection of weak signals. II. (Further results with application to a set of ALMA and ATCA data)

    Full text link
    The matched filter (MF) is one of the most popular and reliable techniques to the detect signals of known structure and amplitude smaller than the level of the contaminating noise. Under the assumption of stationary Gaussian noise, MF maximizes the probability of detection subject to a constant probability of false detection or false alarm (PFA). This property relies upon a priori knowledge of the position of the searched signals, which is usually not available. Recently, it has been shown that when applied in its standard form, MF may severely underestimate the PFA. As a consequence the statistical significance of features that belong to noise is overestimated and the resulting detections are actually spurious. For this reason, an alternative method of computing the PFA has been proposed that is based on the probability density function (PDF) of the peaks of an isotropic Gaussian random field. In this paper we further develop this method. In particular, we discuss the statistical meaning of the PFA and show that, although useful as a preliminary step in a detection procedure, it is not able to quantify the actual reliability of a specific detection. For this reason, a new quantity is introduced called the specific probability of false alarm (SPFA), which is able to carry out this computation. We show how this method works in targeted simulations and apply it to a few interferometric maps taken with the Atacama Large Millimeter/submillimeter Array (ALMA) and the Australia Telescope Compact Array (ATCA). We select a few potential new point sources and assign an accurate detection reliability to these sources.Comment: 28 pages, 20 figures, Astronomy & Astrophysics, Minor changes and some typos correcte

    Head up, foot down : object words orient attention to the objects' typical location

    Get PDF
    Many objects typically occur in particular locations, and object words encode these spatial associations. We tested whether such object words (e.g., head, foot) orient attention toward the location where the denoted object typically occurs (i.e., up, down). Because object words elicit perceptual simulations of the denoted objects (i.e., the representations acquired during actual perception are reactivated), we predicted that an object word would interfere with identification of an unrelated visual target subsequently presented in the object's typical location. Consistent with this prediction, three experiments demonstrated that words denoting objects that typically occur high in the visual field hindered identification of targets appearing at the top of the display, whereas words denoting low objects hindered target identification at the bottom of the display. Thus, object words oriented attention to and activated perceptual simulations in the objects' typical locations. These results shed new light on how language affects perception

    Lattice-Spin Mechanism in Colossal Magnetoresistant Manganites

    Get PDF
    We present a single-orbital double-exchange model, coupled with cooperative phonons (the so called breathing-modes of the oxygen octahedra in manganites). The model is studied with Monte Carlo simulations. For a finite range of doping and coupling constants, a first-order Metal-Insulator phase transition is found, that coincides with the Paramagnetic-Ferromagnetic phase transition. The insulating state is due to the self-trapping of every carrier within an oxygen octahedron distortion.Comment: 4 pages, 5 figures, ReVTeX macro, accepted for publication in PR
    • …
    corecore