2,278 research outputs found

    Model of ionic currents through microtubule nanopores and the lumen

    Full text link
    It has been suggested that microtubules and other cytoskeletal filaments may act as electrical transmission lines. An electrical circuit model of the microtubule is constructed incorporating features of its cylindrical structure with nanopores in its walls. This model is used to study how ionic conductance along the lumen is affected by flux through the nanopores when an external potential is applied across its two ends. Based on the results of Brownian dynamics simulations, the nanopores were found to have asymmetric inner and outer conductances, manifested as nonlinear IV curves. Our simulations indicate that a combination of this asymmetry and an internal voltage source arising from the motion of the C-terminal tails causes a net current to be pumped across the microtubule wall and propagate down the microtubule through the lumen. This effect is demonstrated to enhance and add directly to the longitudinal current through the lumen resulting from an external voltage source, and could be significant in amplifying low-intensity endogenous currents within the cellular environment or as a nano-bioelectronic device.Comment: 43 pages, 6 figures, revised versio

    Algebraic and Topological Indices of Molecular Pathway Networks in Human Cancers

    Full text link
    Protein-protein interaction networks associated with diseases have gained prominence as an area of research. We investigate algebraic and topological indices for protein-protein interaction networks of 11 human cancers derived from the Kyoto Encyclopedia of Genes and Genomes (KEGG) database. We find a strong correlation between relative automorphism group sizes and topological network complexities on the one hand and five year survival probabilities on the other hand. Moreover, we identify several protein families (e.g. PIK, ITG, AKT families) that are repeated motifs in many of the cancer pathways. Interestingly, these sources of symmetry are often central rather than peripheral. Our results can aide in identification of promising targets for anti-cancer drugs. Beyond that, we provide a unifying framework to study protein-protein interaction networks of families of related diseases (e.g. neurodegenerative diseases, viral diseases, substance abuse disorders).Comment: 15 pages, 4 figure

    Are there optical communication channels in the brain?

    Full text link
    Despite great progress in neuroscience, there are still fundamental unanswered questions about the brain, including the origin of subjective experience and consciousness. Some answers might rely on new physical mechanisms. Given that biophotons have been discovered in the brain, it is interesting to explore if neurons use photonic communication in addition to the well-studied electro-chemical signals. Such photonic communication in the brain would require waveguides. Here we review recent work [S. Kumar, K. Boone, J. Tuszynski, P. Barclay, and C. Simon, Scientific Reports 6, 36508 (2016)] suggesting that myelinated axons could serve as photonic waveguides. The light transmission in the myelinated axon was modeled, taking into account its realistic imperfections, and experiments were proposed both in-vivo and in-vitro to test this hypothesis. Potential implications for quantum biology are discussed.Comment: 13 pages, 5 figures, review of arXiv:1607.02969 for Frontiers in Bioscience, updated figures, new references on existence of opsins in the brain and experimental effects of light on neuron

    A Bio-Polymer Transistor: Electrical Amplification by Microtubules

    Get PDF
    Microtubules (MTs) are important cytoskeletal structures, engaged in a number of specific cellular activities, including vesicular traffic, cell cyto-architecture and motility, cell division, and information processing within neuronal processes. MTs have also been implicated in higher neuronal functions, including memory, and the emergence of "consciousness". How MTs handle and process electrical information, however, is heretofore unknown. Here we show new electrodynamic properties of MTs. Isolated, taxol-stabilized microtubules behave as bio-molecular transistors capable of amplifying electrical information. Electrical amplification by MTs can lead to the enhancement of dynamic information, and processivity in neurons can be conceptualized as an "ionic-based" transistor, which may impact among other known functions, neuronal computational capabilities.Comment: This is the final submitted version. The published version should be downloaded from Biophysical Journa

    A first principle (3+1) dimensional model for microtubule polymerization

    Full text link
    In this paper we propose a microscopic model to study the polymerization of microtubules (MTs). Starting from fundamental reactions during MT's assembly and disassembly processes, we systematically derive a nonlinear system of equations that determines the dynamics of microtubules in 3D. %coexistence with tubulin dimers in a solution. We found that the dynamics of a MT is mathematically expressed via a cubic-quintic nonlinear Schrodinger (NLS) equation. Interestingly, the generic 3D solution of the NLS equation exhibits linear growing and shortening in time as well as temporal fluctuations about a mean value which are qualitatively similar to the dynamic instability of MTs observed experimentally. By solving equations numerically, we have found spatio-temporal patterns consistent with experimental observations.Comment: 12 pages, 2 figures. Accepted in Physics Letters
    • …
    corecore