80 research outputs found

    Latest advances in innate antiviral defence

    Get PDF
    Recent identification of key components in the pattern recognition receptor pathway of retinoic acid-inducible gene-1-like receptors, coupled with the characterisation of a new cytoplasmic DNA-sensing molecule, has led to a greater understanding of the role that viral nucleic acids play in activating innate immunity. This activation of type-I interferon is essential for both limiting viral infection and stimulating activation of the adaptive immune response

    siRNA-induced immunostimulation through TLR7 promotes antitumoral activity against HPV-driven tumors in vivo

    Get PDF
    Oncogene-specific downregulation mediated by RNA interference (RNAi) is a promising avenue for cancer therapy. In addition to specific gene silencing, in vivo RNAi treatment with short interfering RNAs (siRNAs) can initiate immune activation through innate immune receptors including Toll-like receptors, (TLRs) 7 and 8. Two recent studies have shown that activation of innate immunity by addition of tri-phosphate motifs to oncogene-specific siRNAs, or by co-treatment with CpG oligos, can potentiate siRNA antitumor effects. To date, there are no reports on applying such approach against human papillomavirus (HPV)-driven cancers. Here, we characterized the antitumor effects of non-modified siRNAs that can target a specific oncogene and/or recruit the innate immune system against HPV-driven tumors. Following the characterization of silencing efficacy and TLR7 immunostimulatory potential of 15 siRNAs targeting the HPV type 16 E6/E7 oncogenes, we identified a bifunctional siRNA sequence that displayed both potent gene silencing and active immunostimulation effect. In vivo systemic administration of this siRNA resulted in reduced growth of established TC-1 tumors in C57BL/6 mice. Ablation of TLR7 recruitment via 2′O-methyl modification of the oligo backbone reduced these antitumor effects. Further, a highly immunostimulatory, but non-HPV targeting siRNA was also able to exert antitumoral effects although for less prolonged time compared with the bifunctional siRNA. Collectively, our work demonstrates for the first time that siRNA-induced immunostimulation can have antitumoral effects against HPV-driven tumors in vivo, even independent of gene silencing efficacy

    A comparison of specialist rehabilitation and care assistant support with specialist rehabilitation alone and usual care for people with Parkinson's living in the community: study protocol for a randomised controlled trial

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Parkinson's Disease is a degenerative neurological condition that causes movement problems and other distressing symptoms. People with Parkinson's disease gradually lose their independence and strain is placed on family members. A multidisciplinary approach to rehabilitation for people with Parkinson's is recommended but has not been widely researched. Studies are needed that investigate cost-effective community-based service delivery models to reduce disability and dependency and admission to long term care, and improve quality of life.</p> <p>Methods</p> <p>A pragmatic three parallel group randomised controlled trial involving people with Parkinson's Disease and live-in carers (family friends or paid carers), and comparing: management by a specialist multidisciplinary team for six weeks, according to a care plan agreed between the professionals and the patient and carer (Group A); multidisciplinary team management and additional support for four months from a trained care assistant (Group B); usual care, no coordinated team care planning or ongoing support (Group C). Follow up will be for six months to determine the impact and relative cost-effectiveness of the two interventions, compared to usual care. The primary outcomes are disability (patients) and strain (carers). Secondary outcomes include patient mobility, falls, speech, pain, self efficacy, health and social care use; carer general health; patient and carer social functioning, psychological wellbeing, health related quality of life. Semi structured interviews will be undertaken with providers (team members, care assistants), service commissioners, and patients and carers in groups A and B, to gain feedback about the acceptability of the interventions. A cost - effectiveness evaluation is embedded in the trial.</p> <p>Discussion</p> <p>The trial investigates components of recent national policy recommendations for people with long term conditions, and Parkinson's Disease in particular, and will provide guidance to inform local service planning and commissioning.</p> <p>Trial registration</p> <p>ISRCTN: <a href="http://www.controlled-trials.com/ISRCTN44577970">ISRCTN44577970</a></p

    Is the inflammasome a potential therapeutic target in renal disease?

    Get PDF
    The inflammasome is a large, multiprotein complex that drives proinflammatory cytokine production in response to infection and tissue injury. Pattern recognition receptors that are either membrane bound or cytoplasmic trigger inflammasome assembly. These receptors sense danger signals including damage-associated molecular patterns and pathogen-associated molecular patterns (DAMPS and PAMPS respectively). The best-characterized inflammasome is the NLRP3 inflammasome. On assembly of the NLRP3 inflammasome, post-translational processing and secretion of pro-inflammatory cytokines IL-1β and IL-18 occurs; in addition, cell death may be mediated via caspase-1. Intrinsic renal cells express components of the inflammasome pathway. This is most prominent in tubular epithelial cells and, to a lesser degree, in glomeruli. Several primary renal diseases and systemic diseases affecting the kidney are associated with NLRP3 inflammasome/IL-1β/IL-18 axis activation. Most of the disorders studied have been acute inflammatory diseases. The disease spectrum includes ureteric obstruction, ischaemia reperfusion injury, glomerulonephritis, sepsis, hypoxia, glycerol-induced renal failure, and crystal nephropathy. In addition to mediating renal disease, the IL-1/ IL-18 axis may also be responsible for development of CKD itself and its related complications, including vascular calcification and sepsis. Experimental models using genetic deletions and/or receptor antagonists/antiserum against the NLRP3 inflammasome pathway have shown decreased severity of disease. As such, the inflammasome is an attractive potential therapeutic target in a variety of renal diseases

    Mitochondrial arginase-2 is essential for IL-10 metabolic reprogramming of inflammatory macrophages.

    Get PDF
    Mitochondria are important regulators of macrophage polarisation. Here, we show that arginase-2 (Arg2) is a microRNA-155 (miR-155) and interleukin-10 (IL-10) regulated protein localized at the mitochondria in inflammatory macrophages, and is critical for IL-10-induced modulation of mitochondrial dynamics and oxidative respiration. Mechanistically, the catalytic activity and presence of Arg2 at the mitochondria is crucial for oxidative phosphorylation. We further show that Arg2 mediates this process by increasing the activity of complex II (succinate dehydrogenase). Moreover, Arg2 is essential for IL-10-mediated downregulation of the inflammatory mediators succinate, hypoxia inducible factor 1α (HIF-1α) and IL-1β in vitro. Accordingly, HIF-1α and IL-1β are highly expressed in an LPS-induced in vivo model of acute inflammation using Arg2-/- mice. These findings shed light on a new arm of IL-10-mediated metabolic regulation, working to resolve the inflammatory status of the cell

    RRx-001, A novel dinitroazetidine radiosensitizer

    Get PDF
    The ‘holy grail’ in radiation oncology is to improve the outcome of radiation therapy (RT) with a radiosensitizer—a systemic chemical/biochemical agent that additively or synergistically sensitizes tumor cells to radiation in the absence of significant toxicity. Similar to the oxygen effect, in which DNA bases modified by reactive oxygen species prevent repair of the cellular radiation damage, these compounds in general magnify free radical formation, leading to the permanent “fixation” of the resultant chemical change in the DNA structure. The purpose of this review is to present the origin story of the radiosensitizer, RRx-001, which emerged from the aerospace industry. The activity of RRx-001 as a chemosensitizer in multiple tumor types and disease states including malaria, hemorrhagic shock and sickle cell anemia, are the subject of future reviews

    Multi-messenger observations of a binary neutron star merger

    Get PDF
    On 2017 August 17 a binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors. The Fermi Gamma-ray Burst Monitor independently detected a gamma-ray burst (GRB 170817A) with a time delay of ~1.7 s with respect to the merger time. From the gravitational-wave signal, the source was initially localized to a sky region of 31 deg2 at a luminosity distance of 40+8-8 Mpc and with component masses consistent with neutron stars. The component masses were later measured to be in the range 0.86 to 2.26 Mo. An extensive observing campaign was launched across the electromagnetic spectrum leading to the discovery of a bright optical transient (SSS17a, now with the IAU identification of AT 2017gfo) in NGC 4993 (at ~40 Mpc) less than 11 hours after the merger by the One- Meter, Two Hemisphere (1M2H) team using the 1 m Swope Telescope. The optical transient was independently detected by multiple teams within an hour. Subsequent observations targeted the object and its environment. Early ultraviolet observations revealed a blue transient that faded within 48 hours. Optical and infrared observations showed a redward evolution over ~10 days. Following early non-detections, X-ray and radio emission were discovered at the transient’s position ~9 and ~16 days, respectively, after the merger. Both the X-ray and radio emission likely arise from a physical process that is distinct from the one that generates the UV/optical/near-infrared emission. No ultra-high-energy gamma-rays and no neutrino candidates consistent with the source were found in follow-up searches. These observations support the hypothesis that GW170817 was produced by the merger of two neutron stars in NGC4993 followed by a short gamma-ray burst (GRB 170817A) and a kilonova/macronova powered by the radioactive decay of r-process nuclei synthesized in the ejecta

    Beyond equilibrium climate sensitivity

    Get PDF
    ISSN:1752-0908ISSN:1752-089
    corecore